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Tianheng Wang 
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        Ovarian cancer is the fifth most common cancer among women and has the highest 

mortality rate of all gynecologic cancers. Current clinical imaging modalities are limited 

by poor sensitivity and specificity. Therefore, there is an urgent need to develop effective 

tools to detect ovarian cancer. In this dissertation, two imaging modalities, optical 

coherence tomography (OCT) and photoacoustic imaging have been investigated for 

ovarian cancer detection and characterization.  

        In the first modality, optical scattering coefficient, phase retardation and phase 

retardation rate were quantitatively extracted from polarization-sensitive OCT (PS-OCT) 

images. A highly positive correlation was found between those three parameters and 

collagen content, which is an indicator of ovarian tissue malignancy. Malignant ovarian 

tissue showed statistically significant lower scattering and birefringence property than 

normal ovarian tissue. A three-parameter logistic model was developed to diagnose 

ovaries as malignant or normal. The extracted parameters from 33 ovaries were used as 

input predictors to train the logistic model, and 10 additional ovaries were tested using 
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this trained model. 100% sensitivity and specificity were achieved in the training group; 

100% sensitivity and 83.3% specificity were achieved in the testing group. In the second 

modality, a laser pulse stretching scheme is designed to improve laser energy delivery in 

photoacoustic imaging in order to improve in vivo ovarian cancer detection based on 

optical fiber illumination. The effects of pulse width on photoacoustic detection using 

different ultrasound transducers were systematically investigated by simulations and 

experiments. In addition, an optical-resolution photoacoustic microscopy (PAM) was 

developed to map microvasculature networks in ovarian tissue. The feasibility of PAM to 

differentiate malignant from normal ovaries was explored by comparing PAM images 

morphologically. PAM images of both normal and malignant ovarian tissue match the 

histology. Based on the observed differences between PAM images of normal and 

malignant ovarian tissue in microvasculature features and distributions, seven parameters 

were quantitatively extracted and applied to a logistic model for ovarian tissue diagnosis. 

A specificity of 81.3% and a sensitivity of 88.2% were achieved. Those results have 

demonstrated the great potential of OCT and photoacoustic imaging for clinical ovarian 

cancer detection.  
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 1 

1 Introduction 

1.1 Ovarian cancer 

        Ovarian cancer ranks fifth in cancer deaths and has the highest mortality rate among 

all the gynecologic cancers with the 5-year survival rate of 44%. There are approximately 

21,980 estimated new cases of ovarian cancer in the United States in 2014 and an 

estimated 14,270 deaths 
1
.
 
The majority of ovarian cancer cases are diagnosed at Stage III 

and Stage IV due to unreliable early symptoms as well as poor screening techniques. 

There is no effective diagnostic tool for the early detection of ovarian cancer for those 

high risk women. Two landmark studies on prophylactic oophorectomy (PO) for women 

who carry BRCA 1 or BRCA 2 mutations were reported in 2002 
2,3

. PO reduces the risk 

of ovarian cancer by more than 50%, and has been accepted as the standard care for high 

risk women. However, there appears to be a higher mortality rate for premenopausal 

oophorectomy. These high risk women are not candidates for hormone replacement 

therapy due to their increased risk of breast cancer 
4
. It has been found that PO increases 

the mortality of women undergoing oophorectomy before the age of 45 
4
 or even before 

the age of 55 to 60 
5
. Therefore, there is an urgent need to develop effective tools to 

detect ovarian cancer, so that the mortality rate of ovarian cancer can be reduced and the 

quality of patients’ life can be improved. 

 

1.2 Optical and photoacoustic imaging 

        Medical imaging has a long history started by the discovery of X-ray in 1895. The 

most common medical imaging modalities to date include X-ray imaging, nuclear 
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imaging, ultrasound imaging, and magnetic resonance imaging (MRI). Those imaging 

modalities are well developed and play important roles in clinical applications. However, 

each modality has its limitations and drawbacks, including the biological hazards of 

ionizing radiation, limited resolution and contrast, high cost of operation and 

maintenance. 

        Optical imaging has emerged as a promising biomedical imaging modality and 

demonstrated great potential for medical applications. Optical imaging could provide 

high sensitivity to functional changes of biological tissues in terms of light scattering, 

absorption, and fluorescence. In addition, the use of non-ionizing radiation and 

inexpensive instruments provide additional advantages of optical imaging compared with 

other traditional imaging modalities. Optical coherence tomography (OCT) is an 

emerging high resolution and noninvasive imaging technique that can perform cellular 

level imaging 
6-8

. It measures backscattered and back-reflected light waves from 

microstructural features within the examined tissues. OCT typically achieves a resolution 

of several microns and a penetration depth of several millimeters. OCT instrumentation 

has been developing rapidly since it was first demonstrated in 1991 
9
, from free-space to 

fiber-based configurations, from time-domain to Fourier-domain systems, from intensity-

based OCT to different types of functional OCT, including polarization-sensitive OCT 

(PS-OCT) 
10,11

, Doppler OCT 
12-14

 and spectroscopic OCT 
15-17

. OCT has been used to 

image biological tissues in human body and demonstrated great potential for clinical 

applications 
18-20

, including the ophthalmology, dentistry, gastrointestinal (GI) tract, 

coronary blood vessels, colon, breast tissue, etc. 
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        Photoacoustic imaging is a hybrid medical imaging modality 
21,22

 and has 

demonstrated potential to image animal or human organs, such as the skin tissue 
23

,  

breast tissue 
24

, brain tissue 
25

, and ovarian tissue 
26

. In photoacoustic imaging, an 

ultrasound transducer is used to measure the acoustic waves generated from thermal 

expansion caused by short width laser pulse absorption of biological tissue. The light 

absorption distribution which directly relates to tumor angiogenesis can be reconstructed 

from the received acoustic signals. Photoacoustic microscopy (PAM) is photoacoustic 

imaging with high spatial resolution 
27,28

. Optical-resolution PAM (OR-PAM) with 

micron-scale resolution, is capable of mapping microvasculature networks in biological 

tissue and resolving microvessels with much higher resolution than conventional 

photoacoustic images obtained with ultrasound array transducer. 

 

1.3 Motivation of this work  

        Currently, there is no reliable modality for ovarian cancer detection. The tumor 

marker CA 125 screening yields a sensitivity of less than 50%; transvaginal ultrasound 

has only 3.1% positive predictive value; pelvic exams yields a low sensitivity of only 

30%; computed tomography (CT) scan for ovarian cancer detection achieves a specificity 

of 85%, however, the sensitivity is only 45% 
29-33

. The motivation of this work is to 

develop more sensitive tools to effectively diagnose ovarian cancer, so that the use of PO 

can be minimized, and the mortality rate of ovarian cancer can be reduced. In this 

dissertation, two basic imaging modalities are used to characterize ovarian tissue. The 

first method is OCT, and the other method is photoacoustic imaging. OCT measures the 

scattering properties of biological tissue, and as a complement, photoacoustic imaging 
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measures the absorption of the tissue. For photoacoustic imaging, two approaches are 

investigated. The first one is based on transvaginal approach for non-invasive detection. 

The other approach is PAM, which is capable of imaging microvasculature networks of 

ovarian tissue. OCT and PAM through fiber catheter and needle are promising for in vivo 

ovarian tissue imaging during the minimally invasive surgery.  

 

1.4 Organization of this dissertation   

        This dissertation is organized into seven chapters. Chapter 1 introduces the 

background of ovarian cancer and some biomedical imaging methods. Chapter 2 provides 

the basic principles of the imaging modalities utilized in this dissertation, including OCT 

and photoacoustic imaging. Chapter 3 describes quantitative analysis of optical scattering 

coefficient and phase retardation properties of ovarian tissue based on PS-OCT. In 

chapter 4, an extended study of ovarian cancer characterization using a three-parameter 

logistic prediction model is described. In chapter 5, a laser pulse stretching scheme is 

studied for efficiently delivering laser energy in fiber-based photoacoustic imaging. 

Chapter 6 demonstrates the ability of PAM to map blood vessels in ovarian tissue, and 

describes the quantitative analysis of PAM images for ovarian tissue characterization.  

Finally, chapter 7 summarizes this dissertation.  
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2 Principles of optical coherence tomography and 

photoacoustic imaging 

2.1 Optical coherence tomography 

2.1.1 Time-domain OCT 

        OCT is analogous to B-mode ultrasound imaging, except that OCT uses light instead 

of sound. Figure 2-1 is a typical time-domain OCT (TD-OCT) system configuration. It 

consists of a Michelson interferometer with a low coherence light source. The low 

coherence light is split into reference and sample arm by a beam splitter, and the back-

reflected light from sample and reference mirror is recombined at the beam splitter. If the 

difference of optical path length between reference and sample arm is within the 

coherence length of light source, the recombined beam can generate interference signals, 

which can be detected by the photodetector. The scattering information from sample at 

different depths can be obtained by scanning the reference mirror. B-scan image can be 

obtained by scanning the light beam or moving the sample. By performing two-

dimensional spatial scanning, 3D image of the sample could be reconstructed. The axial 

resolution is defined by 
1,2

: 

                                                        
2

02ln 2
z cl




 
  


                                                (2-1) 

where lc is the coherence length, 
0  and   are the central wavelength and bandwidth of 

the light source, respectively. The lateral resolution achieved by OCT is determined by 

the size of the focused beam: 
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4

x

f

d





                                                         (2-2) 

where f is the focal length of the objective lens, d is the spot size on the objective lens.  

 

Figure 2-1. Typical time-domain OCT system configuration. 

2.1.2 Fourier-domain OCT 

        The system described in 2.1.1 is a typical time-domain OCT setup. Fourier-domain 

OCT (FD-OCT) has demonstrated higher sensitivity and data acquisition speed compared 

with TD-OCT 
3
. In FD-OCT, only lateral scan is needed. The depth information can be 

obtained from the Fourier transform of the detected frequency spectrum ( )I   to the time 

domain interference pattern ( )I t  
2
: 

                                                           ( ) ( )I t FT I                                                    (2-3) 

where FT represents the Fourier transform operation. The interference pattern can be 

displayed either as a function of optical time of flight or equivalent TD-OCT reference 

mirror displacement. 
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        FD-OCT can be implemented either as spectral-domain OCT (SD-OCT) or swept-

source OCT (SS-OCT). In SD-OCT, a broadband light source and a dispersive 

spectrometer are applied to measure the interference pattern as a function of wavelength. 

In SS-OCT, a tunable laser source and a single detector are applied to detect the intensity 

by sweeping the source spectrum. Since no moving parts are required to obtain axial 

scans, FD-OCT significantly increases the data-acquisition speed.  

 

2.2 Photoacoustic imaging 

        The discovery of the photoacoustic effect dates to 1880 when Alexander Graham 

Bell showed that thin discs emitted sound when it was exposed to a beam of sunlight that 

was rapidly interrupted with a rotating slotted disk 
4,5

. Photoacoustic technique is 

amenable for biomedical applications. In photoacoustic imaging, only nonionizing 

radiation is used, it will not change properties of the biological tissue and is ideal for in 

vivo applications. In addition, the relationships between PA signals and the physical 

parameters of biological tissues are well defined, which permits the quantification of 

various physiological parameters. 

 

2.2.1 Photoacoustic generation 

        The photoacoustic effect is a conversion between pulsed light and sound waves due 

to light absorption and localized thermal excitation. An object with light pulses 

illumination absorbs light energy, the absorbed energy converts into heat and causes 

temperature rise. The temperature rise results in thermal expansion, and generates 

http://en.wikipedia.org/wiki/Alexander_Graham_Bell
http://en.wikipedia.org/wiki/Alexander_Graham_Bell
http://en.wikipedia.org/wiki/Sound
http://en.wikipedia.org/wiki/Light_beam
http://en.wikipedia.org/wiki/Sunlight
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acoustic waves due to pressure variation in the surrounding medium. The pressure rise is 

propagated as ultrasound waves, which is detected by ultrasound transducer. 

        Electromagnetic (EM) waves interact with charged particles by elastic scattering, 

Raman scattering, and absorption. In an absorption interaction, the absorbed energy can 

be transformed into heat or consumed in a chemical reaction, and can also be re-emitted 

as fluorescence. Only the portion which is turned into heat leads to the photoacoustic 

effect. In most cases of diagnostic photoacoustic detection, the heating effect dominates 

the absorption interaction. The absorption ability depends on the EM wavelength, EM 

polarization, molecular constitution, ion density, and environmental conditions.  

        The EM pulse used to generate photoacoustic pressure wave usually has a pulse 

width  .   should be short enough so that thermal diffusion can be neglected. This 

condition is called the thermal confinement condition 
6
: 

2

4

c
th

T

d

D
                                                      (2-4) 

where th  is the thermal confinement threshold, 
cd is the characteristic dimension, and 

TD  is the thermal diffusivity. Under this condition, photoacoustic pressure generated in 

an acoustically homogenous and non-viscous medium is described by the function 
7
:  

2
2

2 2

1
( , ) ( , ) ( , )

s p

p r t p r t H r t
v t C t

 
   

 
                        (2-5)  

where ( , )H r t  is a heating function defined as the thermal energy converted at spatial 

position r  and time t  by the EM radiation per unit volume per unit time; it is related to 

the specific optical power deposition and the optical fluence rate. Cp is the isobaric 

specific heat,   is the isobaric volume expansion coefficient and 
sv is the acoustic speed. 

A sound or stress wave is produced because of the thermo-elastic expansion that is 



 

 11 

induced by a slight temperature rise, as a result of the energy deposition inside the 

biological tissue through the absorption of the incident EM energy. The excited 

photoacoustic signal is locally determined by the EM absorption and scattering 

properties, the thermal properties, including the thermal diffusivity and thermal 

expansion coefficient, and the elastic properties of the sample.  

 

2.2.2 Photoacoustic propagation and detection 

        EM pulse excited pressure acts as an acoustic source and initiates further acoustic 

wave propagation in three-dimensional space. In the low-megahertz frequency range, 

ultrasound in soft tissues has the properties of low scattering and deep penetration 
4,5

. The 

total attenuation results from the combined losses due to both absorption and scattering. 

The attenuation of all tissues is dependent on the temperature and frequency. Both 

ultrasound attenuation and EM absorption affect the photoacoustic detection depth. For 

optical waves, the propagation is usually modeled by the radiative transfer equation, 

involving the scattering coefficient s , the absorption coefficient a  and phase function. 

The reduced scattering coefficient '

s  is also a very important parameter. Although the 

radiative transfer equation generally does not have exact analytical solutions, it can be 

solved by Monte Carlo simulations, or under the diffusion approximation. The absorption 

by the tissue plays an important role for the variations in the illumination depth, and 

consequently the detection depth of photoacoustic detection.  

        The ultrasound signal from the initial source reaches the tissue surface and then can 

be received by an ultrasound transducer. Different types of ultrasound transducers can be 

used, including single-element transducers, array transducers, integrated transducers and 
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virtual point transducers. The most often used ultrasound detectors are based on 

piezoelectric materials, which have low thermal noise and high sensitivity and can 

provide a wide band of up to 100 MHz 
4,5

. In addition to acoustic detection, the optical 

detection is also feasible. Optical methods are often based on photoacoustic-pressured-

induced surface displacement or refraction index changes, and they have potential for 

non-contact measurement and rapid monitoring of large areas 
8
. The disadvantages of 

optical detection relative to piezoelectric detection include lower sensitivity and higher 

noise. 
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3 Quantitative analysis of optical scattering coefficient 

and phase retardation for ovarian tissue 

characterization 
1,2

 

3.1 Introduction 

        Optical coherence tomography (OCT) 
3-7

 measures backscattered light generated 

from an infrared light source directed to the tissues being examined. The morphological 

features of pre-neoplastic or early neoplastic changes have prompted the development of 

OCT for early-stage ovarian cancer detection 
8-13

. OCT is sensitive to the changes in 

collagen which are typically seen as malignancy develops 
12,13

. Polarization-sensitive 

OCT (PS-OCT) is a functional extension of conventional OCT and offers additional 

physiological information by measuring the polarization properties of biological tissues 

14,15
. PS-OCT provides enhanced image contrast by making use of relative phase change 

of two orthogonal polarization detection channels. PS-OCT has been reported as an 

effective tool to detect and analyze fibrous tissues, including retinal nerve fiber layer 
16,17

, 

collagen fibers in skin 
18-20

, collagen and smooth muscle cell content in atherosclerotic 

plaques 
21,22

, and carious lesions 
23, 24

. M. C. Pierce et al. 
18

 quantified the birefringence 

loss due to thermal denaturation of collagen, with mean phase retardation rate of 0.249 

degree/µm measured from 26 burned skin sites, compared with that of 0.401 degree/µm 

from 26 normal skin sites. J. Strasswimmer et al. 
19

 indicated that PS-OCT can 

distinguish normal skin from tumor, and the tumor showed very little birefringence 

property, with the phase retardation rate much smaller than that of normal skin. S. K. 
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Nadkarni et al. 
21

 demonstrated that PS-OCT was capable of measuring the birefringence 

in plaques and in fibrous caps of necrotic core fibroatheroma after examining 87 aortic 

plaques obtained from 20 human cadavers. W. Kuo et al. 
22

 demonstrated that PS-OCT 

enabled differentiation of the atherosclerotic structures from normal tissue, and the 

quantified phase retardation results indicated that birefringence changes in fibrous and 

calcified plaques were more apparent than in normal vessels.  

        In this chapter, we report, to the best of our knowledge, the first study that uses PS-

OCT for ovarian tissue characterization. A total of 33 ex vivo ovaries obtained from 18 

patients were evaluated. We also measured the optical scattering properties of these 

ovaries from conventional OCT images and evaluated the potential of using two 

parameters of phase retardation and scattering property to quantitatively characterize 

normal and malignant ovarian tissues. The optical scattering coefficient and phase 

retardation from normal and malignant ovaries were extracted from conventional OCT 

and phase retardation images, respectively. The correlation between collagen content, as 

assessed from Sirius Red staining, estimated scattering coefficient and phase retardation 

properties were also investigated. Results demonstrate that scattering coefficient and 

phase retardation obtained from PS-OCT are potentially valuable parameters in 

differentiating normal from malignant ovaries. 

 

3.2 Materials and methods 

3.2.1 PS-OCT 
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        Figure 3-1 depicts the time-domain PS-OCT system configuration. The key system 

features are briefly summarized here. The PS-OCT system consists of a 40 nm bandwidth 

super luminescent diode source (SLED) at center wavelength of 1310 nm and a 

Michelson interferometer. The 2 mW output light beam from the SLED passes a vertical 

polarizer and is evenly separated into sample arm and reference arm by a beam splitter 

(BS). In the sample arm, a quarter-waveplate QWP1 with the fast axis oriented at 45 

degrees with respect to the horizontal direction is used to convert the linearly polarized 

light into the circularly polarized light. The circularly polarized light is focused by an 

objective lens to illuminate the examined sample. In the reference arm, another quarter-

waveplate QWP2 with the fast axis oriented at 22.5 degrees with respect to the horizontal 

direction is placed right after the BS. After light beam back-propagating through the 

QWP2, the polarization state is changed to 45 degrees with respect to the horizontal 

direction which provides equal reference power for both orthogonal polarization 

channels. The reference mirror is driven by a stepper motor back and forth to provide 3.6 

mm free space scanning depth. The back-scattered sample arm beam and the back-

reflected reference arm beam recombine and form interferogram at the BS. The 

recombined light is separated by a polarization beam splitter (PBS) into horizontal and 

vertical components which are independently directed toward two identical 

photodetectors (D1 and D2). Conventional OCT is obtained by calculating the summation 

of the squares of both orthogonal polarization channel signals. Phase retardation image is 

obtained from measuring the arctangent between vertical and horizontal components. 



 

 16 

 

Figure 3-1. Time domain PS-OCT system configuration. P: polarizer; BS: beam 

splitter; PBS: polarization beam splitter. 

 

3.2.2 Optical scattering coefficient and phase retardation 

        During imaging, similar conditions for all ovarian samples were achieved by 

mounting the ovary on a three-dimensional stage and adjusting tissue surface to the same 

depth position. The calculated numerical aperture 0.02 of the sample arm optics in our 

fixed focusing PS-OCT system was very low, which ensured the superficial scanning 

depth within the focal zone. Optical scattering coefficient was estimated by fitting 

compounded conventional OCT signal to a single scattering model based on Beer’s law. 

Total attenuation coefficient µt is the summation of absorption coefficient (µa) and 

scattering coefficient (µs). As µa is much smaller than µs, µs is approximately equal to µt 

and it is a good estimate of the local scattering properties. Therefore, the quantitative µs 

extracted from OCT A-lines could reflect the local collagen content. In the single 
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scattering model, the OCT signal is given by Beer’s law 0( ) exp( 2 )sI z I z  . The OCT 

signal I(z) refers to the amplitude of the interference signal, the factor 2 accounts for the 

round trip attenuation and the square-root accounts for the fact that OCT measures the 

light amplitude instead of the intensity. In this study, 1 mm tissue corresponding to 74 A-

lines was selected for averaging to minimize the speckle noise effect. A fitting example 

from a normal ovary is shown in Figure 3-2 where 3-2 (a) is a conventional OCT image 

and 3-2 (b) shows the fitting curves. The white dashed rectangular in Figure 3-2 (a) 

represents the selected 1mm area for fitting. The depth profile of one single A-line in the 

selected area is plotted as the black dashed curve and the compounded depth profile is 

shown as the blue solid curve in Figure 3-2 (b). The scattering coefficient was estimated 

by numerically fitting the compounded depth profile to the single scattering model shown 

as the red dotted curve in Figure 3-2 (b) and the value of 2.69 mm
-1

 is shown in Figure 3-

2 (d). The phase retardation image is shown in Figure 3-2 (c). The dark blue represents 

phase retardation value of zero degree and the dark red shows phase retardation at 90 

degrees. The average phase retardation of the same area marked by the selected white 

dashed rectangular in Figure 3-2 (c) was calculated and the value of 27.9 degrees is 

shown in Figure 3-2 (d) as well.  

        To calculate the specificity and sensitivity, thresholds of estimated scattering 

coefficient and phase retardation were selected, respectively. The specificity and 

sensitivity of each method were calculated as: specificity = TN / (TN + FP) × 100%; 

sensitivity = TP / (TP + FN) × 100%, where TP represents the number of true-positive 

findings, TN represents the number of true-negative findings, FP represents the number 

of false-positive findings, and FN represents the number of false-negative findings. 
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Figure 3-2. Optical scattering coefficient and average phase retardation 

measurement example. (a) conventional OCT image; (b) fitting curves; (c) phase 

retardation image; (d) result table. White dashed rectangular: selected area for 

fitting; scale bar: 0.5 mm. 

3.2.3 Ovary sample 

        In this study, 33 ovaries obtained from 18 patients whose age ranged from 37 to 78 

(mean 61) were investigated using the PS-OCT system. Ovaries were extracted from 

patients undergoing PO at the University of Connecticut Health Center (UCHC). The 

patients were at risk for ovarian cancer or they had an ovarian mass suggestive of 

malignancy. This study was approved by the Institutional Review Boards of UCHC, and 

informed consent was obtained from all patients. Ovaries were kept in the 0.9% wt/vol 

NaCl solution and imaged within 24 hours after oophorectomy. After PS-OCT imaging, 

the ovaries were fixed in 10% formalin solution and returned to the Pathology 

Department for histological processing.  
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3.2.4 Histopathology and collagen area fraction 

        For histological evaluation, the ovaries were cut in 5 mm blocks parallel to the 

imaging plane, dehydrated with graded alcohol, embedded in paraffin and sectioned to 7 

m thickness using a paraffin microtome. Once the slides that correspond to the imaged 

planes were identified, they were stained using hematoxylin and eosin (H&E) for 

diagnosis. In addition, in order to analyze the collagen content, adjacent cross-section (7 

m apart from H&E cross-section) was sliced and Sirius Red staining protocol which 

specifically binds to collagen was applied to these slides. The digital image of 

histological ovarian surface tissue covering about 1 mm depth was acquired using a 

bright field microscope. The collagen content was quantitatively calculated using ImageJ 

software (National Institute of Health). The collagen area fraction (CAF) was measured 

as “Stained collagen area / tissue area”. Figure 3-3 shows one set of examples from 

normal [Figure 3-3 (a)-(c)] and malignant [Figure 3-3 (d)-(f)] ovarian tissue imaged by 

OCT. The µs extracted from the OCT fitting areas marked as the white dashed region in 

Figure 3-3 (a) and 3-3 (d) are 2.86 mm
−1

 and 1.29 mm
−1

, respectively. The stained red 

area in Figure 3-3 (c) and 3-3 (f) represents the collagen content. The collagen amount, 

structure, and arrangement are quite different between normal and malignant ovarian 

tissues. The normal ovary exhibits almost exclusively collagen with interspersed stromal 

cells and the collagen fibril is randomly oriented and wavy interlaced. The malignant 

ovary has less collagen content with collagen fibers unidirectionally organized into 

thicker bundles. A larger amount of collagen is found in normal ovarian tissue (CAF = 

58.3%) than in malignant tissue (CAF = 8.4%). 
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Figure 3-3. One set of examples from normal (a-c) and malignant (d-f) ovarian 

tissue. (a), (d): OCT images; (b), (e): H&E histology; (c), (f): picrosirius red 

stains; blue arrows: collagen bundles. 

3.3 Results and discussion 

        Figure 3-4 shows one comparison example between normal [Figure 3-4 (a)-(b)] and 

malignant [Figure 3-4 (c)-(d)] ovarian tissue. Figure 3-4 (a) and 3-4 (c) are conventional 

OCT images while 3-4 (b) and 3-4 (d) are phase retardation images. The mean values of 

estimated scattering coefficients for Figure 3-4 (a) and 3-4 (c) are 3.07 mm
-1

 and 0.85 

mm
-1

, respectively. The mean values of phase retardation for Figure 3-4 (b) and 3-4 (d) 

are 30.0 and 12.9 degrees, respectively.    
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Figure 3-4. Conventional OCT (a, c) and phase retardation images (b, d) from 

normal (a, b) and malignant (c, d) ovarian tissue. Scale bar: 0.5 mm. 

        A total of 18 patients and 33 ovaries were imaged using the PS-OCT system. Three 

patients (#13, #14 and #17) each had only one ovary available for this study. Twenty six 

ovaries obtained from 15 patients were diagnosed as normal and 7 ovaries obtained from 

4 patients were diagnosed as malignant. One patient (#10) had her left ovary diagnosed as 

malignant and her right ovary diagnosed as normal. The patient category, age, mean 

estimated scattering coefficient, mean phase retardation and mean CAF value are 

summarized in Table 3-1. 
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Table 3-1. Patient information and measurement results. 

Category 
Patient 

No. 

Age 

(years) 

Left (L) 

Right(R) 

Estimated 

scattering 

coefficient (mm
-1

) 

Phase 

retardation 

(degrees) 

Collagen area 

fraction (%) 

Normal 

#1 65 
L 2.31  22.2         36.3  

R 2.12  36.6  43.8  

#2 73 
L 2.38  31.0  53.6  

R 2.14  24.6  45.3  

#4 42 
L 2.25  22.5  40.7  

R 2.29  16.4  53.7  

#5 55 
L 2.36  24.7  58.4  

R 2.26  18.2  47.7  

#6 74 
L 2.53  20.6  54.1  

R 2.29  21.2  37.1  

#7 58 
L 3.00  21.7  44.2  

R 2.24  17.7  46.2  

#8 79 
L 2.15  16.1  25.1  

R 2.28  23.1  46.9  

#9 79 
L 2.50  25.9  42.6  

R 2.75  22.5  38.0  

#10 53 R 2.27  28.5  56.8  

#11 48 
L 2.34  16.8  43.9  

R 2.35  28.2  44.6  

#12 47 
L 2.47  21.3  44.6  

R 2.52  24.2  56.4  

#13 45 L 2.39  17.8  42.9  

#14 37 L 2.23  32.1  63.4  

#16 72 
L 2.77  21.3  60.0  

R 2.60  17.1  39.5  

#17 48 L 2.23  15.8  30.5  

mean ± standard deviation 2.39 ± 0.21 22.6 ± 5.3 46.0 ± 9.1 

Malignant 

#3 77 
L 1.77  31.4         32.9  
R 1.60  17.9  18.8  

#10 53 L 1.90  25.9  42.8  

#15 71 
L 1.98  25.7  32.6  
R 1.10  14.7  23.3  

#18 76 
L 2.16  14.7  22.0  
R 1.81  11.9  26.7  

mean ± standard deviation 1.76 ± 0.34 20.3 ± 7.4 28.4 ± 8.3 

 

 

        Depending on the size of the examined ovary, 34~142 measurements of scattering 

coefficient and phase retardation were performed for each ovary. A total of 2044 

scattering coefficients and phase retardation values were estimated from these 33 ovaries 

while 1427 from 26 normal ones and 617 from 7 malignant ones. A total of 1072 CAFs 

were measured from Sirius Red staining histology while 859 from the normal group and 
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213 from the malignant group. The histograms of estimated scattering coefficient, phase 

retardation and CAF for normal and malignant groups are shown in Figure 3-5 (a)-(c), 

respectively. The blue bar represents the normal group and the red bar represents the 

malignant group. Estimated scattering coefficient in normal and malignant ovarian tissue 

shows Gaussian distribution property demonstrated as the dotted and solid curves in 

Figure 3-5 (a). The normal group has higher scattering property at a wavelength of 1310 

nm ranging from 0.60 to 5.27 mm
-1

 with a mean value of 2.38 mm
-1

 (±0.67), while the 

malignant group demonstrates lower value ranging from 0.42 to 3.86 mm
-1

 with a mean 

value of 1.74 mm
-1

 (±0.55). For phase retardation shown in Figure 3-5 (b), the normal 

group has higher values ranging from 8.7 to 60.6
 
degrees with a mean value of 22.6

 

degrees (±9.0
 
degrees) while the malignant group demonstrates lower value ranging from 

9.9 to 53.8 degrees with a mean value of 19.1 degrees (±9.4 degrees). For CAF shown in 

Figure 3-5 (c), the normal group has higher collagen content ranging from 7.6% to 81.0% 

with a mean value of 47.8% (±15.4%) and the malignant group has lower value ranging 

from 4.6% to 61.7% with a mean value of 26.2% (±11.6%). CAF in normal and 

malignant ovarian tissue shows Gaussian distribution property as demonstrated by dotted 

and solid curves in Figure 3-5 (c). 

 

Figure 3-5. Histograms of estimated scattering coefficient (a), phase retardation 

(b) and collagen area fraction (c) for normal and malignant ovary groups. 
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        The scatter plots in Figure 3-6 (a)-(c) shows mean estimated scattering coefficient, 

mean phase retardation and mean CAF value of each ovary for normal and malignant 

groups, respectively. Using estimated scattering coefficient as a classifier and selecting 

the separation threshold at 2 mm
-1

, a specificity of 100% and a sensitivity of 86% are 

achieved. Especially for patient #10 who had left ovary diagnosed as malignant and right 

ovary diagnosed as normal, her bilateral ovaries are classified into correct groups based 

on estimated scattering coefficient. The mean value of estimated scattering coefficient of 

each ovary for normal and malignant groups, along with their standard deviation, is listed 

in Table 3-1. The Student’s t-test shows statistical significance between normal and 

malignant groups with a p value of 0.002. Using phase retardation as a classifier and 

selecting the separation threshold at 15 degrees, a specificity of 100% and a sensitivity of 

43% are achieved. For the two insets pointed by the dashed circle-arrows shown in 

Figure 3-6(b), each shows two ovaries with close values. The mean value and standard 

deviation of phase retardation of each ovary for normal and malignant groups are also 

listed in Table 3-1 and are not statistically significant (p = 0.462) between normal and 

malignant groups. However, the phase retardation images show very different features as 

shown in Figure 3-4 (b) and 3-4 (d) which could help characterize ovarian tissue 

qualitatively. In Figure 3-4 (b), the phase retardation of the normal ovarian tissue 

increases uniformly and is slightly dependent on the depth. But in Figure 3-4 (d), the 

phase retardation of the malignant ovarian tissue shows more random manner with red 

spots scattered in the image sporadically. Although using CAF alone as a classifier 

cannot completely differentiate normal from malignant ovaries (specificity 92% and 

sensitivity 86%) as shown in Figure 3-6 (c), statistical significance between normal 
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(46.0% ± 9.1%, n = 26) and malignant (28.4% ± 8.3%, n = 7) groups was found with a p 

value less than 0.0001. 

 

Figure 3-6. Scatter plots of estimated scattering coefficient (a), phase retardation 

(b) and CAF (c) of each ovary for normal and malignant ovary groups. 

        Combining estimated scattering coefficient and phase retardation for each ovary, we 

should be able to differentiate normal and malignant ovaries more effectively. The scatter 

plot in Figure 3-7 shows the two parameters for each ovary. The blue star represents 

normal ovary and the red circle represents malignant ovary. The centers and half axes of 

blue and red solid ellipses show the mean value and standard deviation of estimated 

scattering coefficient and phase retardation for each group. Using estimated scattering 

coefficient and phase retardation as the classifiers and selecting the same thresholds at 2 

mm
-1

 and 15 degrees shown as the green dashed lines in Figure 3-7, 100% specificity and 

100% sensitivity can be obtained.  
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Figure 3-7. Two-parameter (estimated optical scattering coefficient and average 

phase retardation) plot. 

        Linear regression analysis in Figure 3-8 (a) shows positive correlation between 

collagen content and estimated scattering coefficient with R value of 0.57 (p < 0.0001). 

Phase retardation measured from ovaries is also positively correlated with collagen 

content with R value of 0.47 (p < 0.01) which is shown in Figure 3-8 (b). The blue 

dashed plots show the 95% prediction intervals. The different collagen content found in 

normal and malignant groups in part explains the different scattering properties estimated 

from conventional OCT measurements and the different birefringence behaviors from 

phase retardation images. However, there are many other factors, including collagen 

thickness, collagen orientation, fibroblast and cell nuclei, etc., which may need to take 

into account. In addition, note that in this CAF study, there are 1072 measurements which 

are less than the 2044 scattering coefficient and phase retardation measurements and 

these CAF measurements are obtained from close sites but not as exact as OCT images 

because it is very difficult if not impossible to exactly match the histology slides with 

OCT cross-section imaging planes.  
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Figure 3-8. (a) Positive correlation demonstration between estimated scattering 

coefficient and collagen content; (b) Positive correlation demonstration between 

phase retardation and collagen content. The blue dashed lines show 95% 

prediction intervals. 

        It is interesting to observe from Figure 3-6 (b) and Figure 3-7 that the average phase 

retardation of cancer cases spreads out in a large range and a simple threshold is not 

adequate to separate the cancers from normal ovaries. However, a good correlation 

coefficient of R = 0.7 (p = 0.079) was obtained between average phase retardation and 

average CAF of 7 cancer cases. Because CAF from Sirius Red staining directly evaluates 

collagen, the positive correlation suggests the phase retardation may measure the 

complex collagen developmental process of ovarian cancers. Future efforts will be 

devoted to validating the initial results with a larger patient pool, upgrading the time 

domain PS-OCT system to a Fourier domain system, and developing a catheter based 

probe for in vivo inspection of ovaries during minimally invasive surgery. 
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3.4 Summary 

        In this chapter, we studied 33 ovaries obtained from 18 patients using the PS-OCT 

system. Optical scattering coefficient was quantitatively estimated by fitting conventional 

OCT signal to a single scattering model. A specificity of 100% and a sensitivity of 86% 

were achieved.  Average phase retardation was calculated from PSOCT phase retardation 

image. A specificity of 100% and a sensitivity of 43% were achieved. Combining 

estimated scattering coefficient and phase retardation for each ovary, a superior 

specificity of 100% and a sensitivity of 100% were achieved. Collagen content as 

assessed by Sirius Red staining correlates strongly with estimated scattering coefficient 

and phase retardation. These initial results show PS-OCT could be a powerful tool to 

characterize ovarian tissue and to detect ovarian cancers. 
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4 A three-parameter logistic model for ovarian cancer 

detection using polarization-sensitive optical 

coherence tomography 
1
 

 

4.1 Introduction 

        Polarization-sensitive OCT (PS-OCT) is a functional extension of OCT 
2-7

 and 

capable of detecting birefringence changes caused by collagen, and collagen changes in 

human ovary are indicators of malignancy 
8,9

. Therefore, PS-OCT could be an effective 

tool to detect ovarian cancer. In chapter 3, optical scattering coefficient and phase 

retardation of 33 ex vivo ovaries obtained from 18 patients were extracted from time 

domain (TD) PS-OCT intensity and phase images, respectively 
10

. While the scattering 

coefficient was significant in predicting malignancy, the phase retardation achieved low 

sensitivity of 43%. In this study, a more sensitive parameter, the phase retardation rate, 

was extracted from PS-OCT phase images and used together with the scattering 

coefficient and phase retardation to characterize ovarian tissue. In the literature, the PS-

OCT phase retardation rate was introduced by M. C. Pierce et al. to quantify collagen 

denaturation in burned human skin 
11

. In our study, these three parameters extracted from 

33 ovaries were used as inputs to a logistic model to predict or classify the malignant and 

benign ovaries. In addition, 10 more ovaries from 5 patients were imaged with our 

upgraded Fourier domain (FD) PS-OCT system and used to test the model. To the best of 
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our knowledge, this is the first study of using multiple parameters extracted from PS-

OCT images as predictors for ovarian tissue characterization.  

 

4.2 Materials and methods 

4.2.1 Ovary sample and histopathology 

        A total of 43 ovaries were extracted from 23 patients undergoing PO at the 

University of Connecticut Health Center (UCHC). 33 ovaries from 18 patients were 

imaged using TD-PS-OCT while 10 ovaries from 5 patients were imaged using FD-PS-

OCT. These patients were at risk for ovarian cancer or they had ovarian mass or pelvic 

mass suggesting malignancy. This study was approved by the Institutional Review Board 

of UCHC, and informed consent was obtained from all patients. The details of imaging 

procedures and histological processing were described in chapter 3. Sirius Red staining 

protocol was applied to the sectioned slides to analyze the collagen content. The amount 

of collagen was quantitatively analyzed using ImageJ software (National Institute of 

Health). The average collagen area fraction (CAF) was measured as “Stained collagen 

area/tissue area”.  

 

4.2.2 PS-OCT systems 

        The TD-PS-OCT and upgraded FD-PS-OCT systems are shown in Figure 4-1 (a). 

The essential optical configurations of the TD-PS-OCT and upgraded FD-PS-OCT 

systems are the same. The technical details of the TD-PS-OCT system were described in 

chapter 3. The main differences between the upgraded FD system and the TD system are: 
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(1) the super luminescent diode source was replaced with an 110 nm bandwidth swept 

source (HSL-2000, Santec Corp., Japan) with center wavelength of 1310 nm and scan 

rate of 20 kHz; (2) the detectors were replaced with 75MHz bandwidth photodetectors 

(Thorlabs PDB120C); (3) the reference mirror was fixed instead of moving back and 

forth by a stepper motor. The conventional OCT intensity images were obtained from 

calculating the summation of squares of two orthogonally polarized signals, and the 

phase retardation images were obtained by calculating arctangent between vertical and 

horizontal polarization components 
12

. 

 

Figure 4-1. TD/FD-PS-OCT systems configuration. P: polarizer; BS: beam 

splitter; PBS: polarization beam splitter; QWP: quarter-wave plate; M: mirror; 

PD: photodetector. 
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4.2.3 Phase retardation rate 

        During imaging, similar conditions for all ovary samples were obtained by mounting 

the ovary on a three-dimensional stage and adjusting the ovarian tissue surface to the 

same depth position. The phase retardation rate was obtained by linearly fitting phase 

retardation depth profile. The region of interest (ROI) selection was consistent with that 

in chapter 3 when calculating scattering coefficient and phase retardation. Overall, each 

image was evenly divided into several ROIs with 1mm width. Values in all ROIs from all 

images of one ovary were averaged to obtain the phase retardation rate of this ovary. The 

same procedures were followed for all ovaries. An example of fitting phase retardation 

rate of a normal ovary is shown in Figure 4-2 (a) and 4-2 (b). Figure 4-2 (a) is the phase 

retardation image, where the dark blue represents phase retardation value of zero degree 

and the dark red represents 90 degrees. The white dashed rectangular area was selected 

for fitting. The depth profile of the averaged A-lines in the selected area was shown as 

blue curve in Figure 4-2 (b), and the numerical fitting curve was plotted as red. The slope 

of the red curve was calculated as the phase retardation rate. The phase retardation 

decreases with depth after about 1.5mm. This is because the ratio of vertical and 

horizontal signals reduces as light penetrates deeper in the tissue. The fitting error of the 

phase retardation rate is estimated as the norm of the fitting residue divided by the norm 

of the original curve.   
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Figure 4-2. Example of calculating the phase retardation rate. (a) Phase 

retardation image; white dashed rectangular: selected area for fitting; scale bar: 

0.5mm; (b) averaged A-lines and numerical fitting curves. 

4.2.4 Optical scattering coefficient and phase retardation 

        The quantification of scattering coefficient and phase retardation were described in 

chapter 3. Scattering coefficient was estimated by numerically fitting compounded 

conventional OCT depth profile to a single scattering model based on Beer’s law. 1mm 

tissue was averaged to minimize the speckle noise. The phase retardation was obtained by 

calculating the average phase values from PS-OCT phase images of the same area. 

 

4.2.5 Logistic model and receiver operating characteristic curve 

        Logistic regression belongs to the class of generalized linear model (GLM) based on 

the exponential distribution family. It is a statistical model that can describe the 

relationship of several predictor variables X1, X2, …, Xk  to a dichotomous response 

variable  Y (0 or 1) 
13

. The probability of occurrence of one of the two possible outcomes 

of Y can be described by the following equation:  
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Given the data Y, X1, X2, …, Xk, the unknown coefficients , 0,1,...,n n k  can be 

estimated using the maximum likelihood method. In this paper, we use three predictors 

(scattering coefficient, phase retardation, and phase retardation rate) to classify normal 

and malignant ovarian tissue. The MATLAB GLMFIT function was used to fit the 

logistic model using the predictors and the response (0 represents normal and 1 represents 

malignant). The coefficients , 0,1,...,n n k  of the model that best follow the actual 

diagnosis were estimated and used to calculate the estimated responses (the numbers 

between 0 and 1) using GLMVAL function. The GLMFIT function also computed the 

deviance, which is a generalization of the residual sum of squares (comparison of log-

likelihood function of actual fitted values with perfectly fitted values). The deviance was 

used to compare different prediction models, in which different parameter-combinations 

were used as predictors to classify normal and malignant ovaries. The deviance value 

decreases as the model fit improves.  

        The quality of the logistic prediction model was evaluated using the area under the 

receiver operating characteristic (ROC) curve (AUC). The estimated responses from 

different prediction models were used to compute the ROC curves and AUCs using R 

package pROC 
14

. We also estimated the 95% confidence interval (CI) using bootstrap 

method with 10,000 stratified bootstrap replicates. The optimal threshold provided by 

pROC was used to calculate the sensitivity and specificity, positive and negative 

predictive values (PPV, NPV). To further evaluate the logistic prediction model and 
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testing results, we have also investigated the correlation coefficients Rtrain and Rtest 

between calculated responses and the actual diagnosis (0 normal and 1 malignant).  

 

4.3 Results and discussion 

4.3.1 Statistical results of 33 ovaries imaged by TD-PS-OCT 

        A total of 33 ex vivo ovaries from 18 patients were imaged using TD-PS-OCT 

system. 26 ovaries were diagnosed as normal and 7 ovaries were diagnosed as malignant. 

Figure 4-3 shows box plots and p values of normal and malignant ovary groups. Normal 

ovaries show higher average values of scattering coefficient and phase retardation than 

malignant ones, with the normal/malignant ratio of 1.36, 1.11, respectively. For phase 

retardation rate, the average fitting range of normal group is 36.7-329.8 µm from the 

tissue surface, and the malignant group is 38.4-347.3 µm. The range of average value of 

normal group is 28.8-154.8 degree/mm, and malignant group is 8.4-121.6 degree/mm. 

The normal group has mean value of 79.5 degrees/mm (±19.0), which is higher than that 

of the malignant group with mean value of 45.0 degrees/mm (±19.6). The 

normal/malignant ratio of phase retardation rate is 1.77. Phase retardation rate of normal 

and malignant ovaries shows larger difference (p<0.0001) than the other two parameters. 

The fitting error of the phase retardation rate of the normal and the malignant group is 

5.13% (±0.82%) and 4.69% (±0.96%), respectively.   
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Figure 4-3. Box plots of normal and malignant ovary groups. (a) Optical 

scattering coefficient; (b) phase retardation; (c) phase retardation rate; (d) 

collagen area fraction. 

        The scatter plot in Figure 4-4 (a) shows the average phase retardation rate of each 

ovary for normal and malignant groups. The blue star represents the normal ovaries and 

the red circle represents the malignant ones. By setting a threshold of phase retardation 

rate at the value of 55 degree/mm, we could achieve 85.7% sensitivity and 92.3% 

specificity. However, by using phase retardation as a classifier, we could only achieve 

42.9% sensitivity. These results indicate that phase retardation rate could be a more 

significant parameter than phase retardation in distinguishing normal from malignant 

ovaries. Linear regression analysis is shown in Figure 4-4 (b). A positive correlation was 

0

10

20

30

40

50

60

70

80

1

   Normal (n=26)                 Malignant (n=7)

C
o

ll
a
g

e
n

 a
re

a
 f

ra
c

ti
o

n
 (

%
)

1

(d)

0

0.5

1

1.5

2

2.5

3

3.5

1

   Normal (n=26)                 Malignant (n=7)

O
p

ti
c
a

l 
s

c
a
tt

e
ri

n
g

 c
o

e
ff

ic
ie

n
t 

(m
m

-1
)

1

(a)

P=0.002

0

5

10

15

20

25

30

35

40

1

   Normal (n=26)                 Malignant (n=7)

P
h

a
s
e

 r
e

ta
rd

a
ti

o
n

 (
d

e
g

re
e
)

1

(b)

P=0.462

(c)

P<0.0001

0

50

100

150

1

   Normal (n=26)                 Malignant (n=7)

P
h

a
s
e

 r
e

ta
rd

a
ti

o
n

 r
a
te

 (
d

e
g

re
e

/m
m

)

1

P<0.0001



 

 39 

found between phase retardation rate and collagen content, with Pearson’s correlation 

coefficient R=0.74 (p<0.0001), which is higher than those from scattering coefficient 

(R=0.57, p<0.0001) and phase retardation (R=0.47, p<0.01). A multiple linear regression 

shows that those three parameters together positively correlate with collagen content with 

R=0.76, which is higher than that using each parameter alone. Collagen is associated with 

the development of ovarian cancers; the collagen amount and structure are quite different 

between normal and malignant ovaries. The normal and malignant groups have CAF 

values of 46.0% (±9.1%), and 28.4% (±8.3%), respectively. Since CAF, measured from 

Sirius Red staining on ovary samples, directly assesses collagen, the highly positive 

correlation indicates that the phase retardation rate may measure the complicated process 

of collagen development of ovarian cancer.  

 
Figure 4-4. (a) Scatter plot of phase retardation rate of normal and malignant 

ovary groups. (b) Positive correlation demonstration between phase retardation 

rate and collagen content; the blue dashed lines show 95% confidence interval. 
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4.3.2 Training results based on logistic model using the 33-ovary data 

        The three parameters extracted from 33-ovary images were used to train the logistic 

classifier. As shown by the ROC curves in Figure 4-5, the use of all three parameters 

shows much better performance than each parameter alone. The more specific prediction 

results, including sensitivity, specificity, PPV, NPV, AUC (95% CI), correlation 

coefficient Rtrain between estimated responses and actual responses (p value), and 

deviance, of different parameter-combinations are summarized in Table 4-1. By using 

only one parameter as a predictor, none of the models could achieve perfect sensitivity 

and specificity. By using combinations of any two parameters except one set using phase 

retardation and phase retardation rate, or using three parameters as predictors, 100% 

sensitivity and specificity are achieved. The deviance of using three parameters together 

is smaller than that of using two parameters, which indicates that the three-parameter 

model is more reliable.  

 

 

Figure 4-5. ROC curves and AUC of different prediction models: training results. 
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Scattering coeff.  AUC=0.984 

Phase retardation  AUC=0.607 

Phase retardation rate  AUC=0.907 

All three parameters  AUC=1.00

AUC=0.5
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Table 4-1. Summary of logistic model results by using different parameters. SC: 

scattering coefficient, PR: phase retardation, PRR: phase retardation rate, Th: 

threshold. 

Prediction model  

(Th) 

Sensitivity Specificity PPV NPV 

AUC 

(95% CI) 

Rtrain 

(p value) 

Deviance 

SC  

(0.65) 

85.7% 100% 100% 96.3% 

0.984  

(0.934:1.0) 

0.911 

(<0.0001) 

5.94 

PR  

(0.30) 

42.9% 100% 100% 86.7% 

0.607  

(0.302:0.885) 

0.212 

(0.237) 

33.14 

PRR  

(0.38) 
85.7% 92.3% 75.0% 96.0% 

0.907  

(0.720:1.0) 

0.747 

(<0.0001) 
18.92 

SC+PR  

(0.50) 
100% 100% 100% 100% 

1.000 

(1.0:1.0) 

1.000 

(<0.0001) 
6.22e-13 

SC+PRR  

(0.50) 

100% 100% 100% 100% 
1.000 

(1.0:1.0) 

1.000 

(<0.0001) 

1.94e-14 

PR+PRR  

(0.18) 

100% 92.3% 77.0% 100% 

0.973  

(0.912:1.0) 

0.774 

(<0.0001) 

13.30 

SC+PR+PRR 

 (0.50) 

100% 100% 100% 100% 

1.000 

(1.0:1.0) 

1.000 

(<0.0001) 

1.60e-14 

 

4.3.3 Testing results of 10 ovaries imaged by FD-PS-OCT 

        10 ovaries (6 normal and 4 malignant) from 5 patients were imaged using the 

upgraded FD system and were tested using logistic prediction model based on different 

parameters described above. The testing results are summarized in Table 4-2. The same 

threshold of the training group was used for this testing group to calculate the sensitivity, 

specificity, PPV, and NPV. The Rtest values are also shown in Table 4-2 to compare 

different prediction models. The Rtest and AUC are highest (Rtest =0.893, p<0.001, 

AUC=1.0) when using the three-parameter prediction model. Note that the three-
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parameter model achieved AUC=1 as shown in Figure 4-6, but the sensitivity (100%) and 

specificity (83.3%) are not perfect. This is because we set a threshold of 0.5 for the 

training and testing groups for classifying normal and malignant ovaries. If we set a 

threshold of 0.7, we could achieve 100% sensitivity and specificity. However, in the 

three-parameter model training, all estimated responses of normal cases are very close to 

normal response 0, and all estimated responses of malignant cases are very close to 

malignant response 1, so it makes more sense to set the middle point 0.5 as a threshold 

based on the training results. 

 

Table 4-2. Summary of testing results by using the same threshold of the training 

group. SC: scattering coefficient, PR: phase retardation, PRR: phase retardation 

rate, Th: threshold. 

Prediction model 

(Th) 

Sensitivity Specificity PPV NPV 

AUC 

(95% CI) 

Rtest 

(p value) 

SC  

(0.65) 

75.0% 83.3% 75.0% 83.3% 

0.958 

 (0.833:1.0) 

0.764 

(0.010) 

PR  

(0.30) 

0% 100% 0% 60.0% 

0.917 

 (0.667:1.0) 

0.624 

(0.054) 

PRR  

(0.38) 
50.0% 100% 100% 75.0% 

0.958  

(0.833:1.0) 

0.751 

(0.012) 

SC+PR 

 (0.50) 

75.0% 100% 100% 85.7% 
0.875 

 (0.625:1.0) 

0.802 

(0.005) 

SC+PRR  

(0.50) 

100% 83.3% 80.0% 100% 

0.958  

(0.750:1.0) 

0.789 

(0.007) 

PR+PRR  

(0.18) 

75.0% 83.3% 75.0% 83.3% 

0.833  

(0.500:1.0) 

0.495 

(0.146) 

SC+PR+PRR 

 (0.50) 
100% 83.3% 80.0% 100% 

1.000 

(1.0:1.0) 

0.893 

(<0.001) 



 

 43 

 

Figure 4-6. ROC curves and AUC of different prediction models: testing results. 

        In this study, only 10 ovaries were tested using our logistic model, more ovary data 

will be collected to validate the initial results. Currently, because all parameter extraction 

and processing are offline, future work also includes automating our data processing 

procedures so that we could obtain these parameters and input them to the prediction 

model in real-time.  

 

4.4 PS-OCT based on polarization-maintaining fiber 

        Free-space PS-OCT system is bulky compared with fiber-based system. For 

translating this technique from bench to bedside, a more compact fiber-based Fourier-

domain PS-OCT system is developed. The system configuration is shown is Figure 4-7. 

The PS-OCT system consists of a swept source at center wavelength of 1310 nm and a 

fiber-based Michelson interferometer. The light beam from the swept source passes an in-

line fiber polarizer and is evenly separated into sample arm and reference arm by a 50/50 

polarization-maintaining (PM) fiber coupler. In the sample arm, a quarter-waveplate 
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Scattering coeff. AUC=0.958

Phase retardation AUC=0.917

Phase retardation rate AUC=0.958

All three parameters AUC=1.00
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QWP1 with the fast axis oriented at 45 degrees with respect to the horizontal direction is 

used to convert the linearly polarized light into the circularly polarized light. The 

circularly polarized light is focused on the examined sample through an objective lens. In 

the reference arm, another quarter-waveplate QWP2 with the fast axis oriented at 22.5 

degrees with respect to the horizontal direction is placed after the PM fiber coupler. After 

light beam back-propagating through the QWP2, the polarization state is changed to 45 

degrees with respect to the horizontal direction which provides equal reference power for 

both orthogonal polarization channels. The backscattered beam from the sample arm and 

the back-reflected beam from reference arm recombine and interfere at the PM fiber 

coupler. The recombined light is separated by a polarization beam splitter (PBS) into 

horizontal and vertical components which are detected by two identical photodetectors 

(BD1 and BD2). Same as the free-space PS-OCT, the conventional OCT image is 

obtained by calculating the summation of the squares of both orthogonal polarization 

channel signals; phase retardation image is obtained from measuring the arctangent 

between vertical and horizontal components.  

 

Figure 4-7. Fiber-based PS-OCT system configuration. PC: polarization 

controller; PM: polarization-maintaining; QWP: quarter waveplate; NDF: neutral 

density filter; PBS: polarization beam splitter. 
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        Figure 4-8 shows the human ovarian tissue images acquired by this fiber-based PS-

OCT system, where Figure 4-8 (a) is the OCT intensity image and Figure 4-8 (b) is the 

phase retardation image.  

 

Figure 4-8. Conventional OCT (a) and phase retardation image (b) of human 

ovarian tissue. Scale bar: 0.5 mm. 

4.5 Summary  

        The phase retardation rate quantitatively extracted from PS-OCT has significantly 

improved the ovarian cancer diagnosis when it is used together with optical scattering 

coefficient and phase retardation. By using a new three-parameter logistic prediction 

model, we achieve 100% sensitivity and specificity in the training group, and 100% 

sensitivity and 83.3% specificity in the testing group. The initial results demonstrate that 

the three-parameter prediction model based on PS-OCT could be a powerful tool to 

evaluate ovarian tissue. 
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5 Application of laser pulse stretching scheme for 

efficiently delivering laser energy in photoacoustic 

imaging 
1
 

 

5.1 Introduction  

        Photoacoustic imaging has emerged as a promising biomedical imaging technique 

and demonstrated great potential for medical applications
 2,3

, including imaging skin 

tissue
 4

, brain vasculature 
5-7

, cancerous lesions in the breast 
8
 and ovarian tissue

 9,10
. 

Near-infrared short-pulsed laser light is employed for tissue irradiation and an ultrasound 

transducer is used to receive the photoacoustic signals generated by the tissue from 

absorption of the light. In many clinical applications, including intravascular probe 
11,12

, 

endoscopy 
13

, and transvaginal photoacoustic probe for noninvasive ovarian cancer 

screening 
10

, optical fibers are widely used to deliver the laser beam to the imaged tissue. 

During the photoacoustic imaging of deeply-seated lesions lying several centimeters 

below the tissue surface, high-energy and short duration laser pulses are often employed 

to improve the image quality. These high peak intensity pulses can however damage an 

optical fiber input face during light coupling if the fiber damage threshold is exceeded 
14

. 

This in turn limits the total energy that can be coupled into optical fibers for delivering 

the laser light to the imaged tissue. For deeply-seated lesions in particular, the limited 

energy imposed by the fiber damage threshold could result in poor image quality and 

contrast. Beyrau et al. 
15

 indicated that the damage threshold for fused silica was 1 
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GW/cm
2
. Robinson et al. 

16
 reported the peak power damage threshold of various 

commercial fibers at the laser wavelength of 532 nm and the pulse width of 10ns. The 

measured damage threshold varied from 3.7 GW/cm
2
 for a 100 µm-core-diameter fiber to 

3.9 GW/cm
2
 for a 200 µm-core-diameter fiber, and the corresponding pulse energy 

damage threshold varied from 2.9 mJ to 9.7 mJ. They also reported that the damage 

threshold of their experimental 700 µm fiber was 0.86 GW/cm
2
 which was similar to the 

1 GW/cm
2 

damage threshold level of the commercially available high energy fiber from 

OFS Inc (Fitel HCGMO200T 200 µm). For the in vivo clinical applications, including the 

intravascular and endoscopic photoacoustic imaging, the probe needs to be miniaturized 

and the fiber diameters need to be in the range of a few hundred micrometers 
11,13

. Also, 

in photoacoustic imaging, the laser pulse width is usually as low as 5-7 ns 
11,13,17

. 

Assuming the laser pulse width is 6 ns and the fiber diameter is 400 µm, based on the 

1GW/cm
2
 fiber damage threshold 

15,16
, the maximum energy that can be coupled into the 

fiber  is only about 7.5 mJ; if the fiber diameter is 200 µm, the maximum energy coupled 

is only about 1.9 mJ. Considering the coupling loss of optical fibers, the output energy 

would be even lower, which is far below the maximum permissible exposure (MPE) 
18 

and not enough for imaging deeper lesions. Therefore, increasing the fiber damage 

threshold is a critical issue for photoacoustic imaging applications.  

        The coreless fiber endcap can also reduce the optical damage at fiber end faces, and 

the anti-reflective (AR) coating can minimize the back-reflection. However, the fiber 

endcap and the AR coating can cause extra energy losses including splicing loss. 

Moreover, the damage threshold is highly dependent on how the interface is prepared. 

Therefore the improvement on the fiber damage threshold is not predictable. In reference 
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16, a tapered glass funnel was used to couple the laser light to a hollow glass waveguide. 

The maximum input energy was increased, but the total laser energy delivery efficiency 

was only 30%. Besides, the delivery system was complicated and the coupling was a 

variable, and its cost was much higher than that for commercial silica fibers. Comparing 

with those methods, laser-pulse-stretching is a convenient and an effective technique to 

solve the fiber damage problem. It can reduce the peak power and increase the fiber 

damage threshold 
19

. Ideally, the laser pulse can be stretched without losing optical 

energy. Pulse stretching techniques include optical pulse stretching 
20-23

, electronic pulse 

stretching 
24, 25

, pulse stretching by dispersion 
26-28

, and pulse stretching using nonlinear 

materials 
29, 30

. In optical pulse stretching, optical components are used to split the 

incident laser pulse into two or more pulses, and an appropriate optical delay is 

introduced to each pulse. Recombination of all the delayed pulses then results in a 

stretched pulse. One typical example of an optical pulse stretching system is the ring 

cavity configuration using mirrors and beam-splitters. A square ring cavity was reported 

in an oscillator-amplifier copper vapor laser which stretched the laser pulse from 34 ns to 

50 ns 
20

. Multiple-ring-cavity configuration was reported to stretch the 8.4 ns laser pulse 

of Q-switched Nd:YAG laser to a 75 ns laser pulse with a peak power reduction to 10% 

and an efficiency of 83% 
21

. An optical pulse stretcher composed of two optical cavities 

was reported to stretch a 24 ns laser pulse and also realized fast switching between 

different pulse durations (24 ns, 60 ns, 63 ns, 122 ns)
 22

. Among those methods of pulse 

stretching, the ring-cavity setup is easy and the cost is low. 

        In this chapter, the effect of pulse stretching on photoacoustic imaging is studied by 

simulations and experiments. An initial 17 ns laser pulse measured at the half maximum 
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(FWHM) was launched from a Ti:sapphire laser and stretched to 27 ns and 37 ns by a 

ring-cavity nanosecond laser pulse stretching system in order to increase the fiber damage 

threshold. The peak of the 37 ns stretched pulse reduced to 42% of the original pulse and 

the stretched pulse increased the fiber damage threshold by 1.5-fold, which is significant 

in delivering higher total energy for deep tissue imaging. Photoacoustic signals from 

different target sizes obtained with different pulse durations were simulated. Three 

ultrasound transducers centered at 1.3 MHz, 3.5 MHz, 6 MHz frequencies of 120%, 80%, 

80% fractional bandwidth were used. The simulations were validated by experimental 

results using a broadband hydrophone with a flat frequency response from 1 to 10 MHz. 

In addition, quantitative comparisons of photoacoustic images obtained with three 

ultrasound transducers of the same center frequency and bandwidth as the simulation 

showed that the image quality was not affected by stretching the pulse using the reported 

ring-cavity technique. To the best of our knowledge, this is the first study applying laser 

pulse stretching to photoacoustic imaging applications. The simulations and experimental 

results can be used as a reference for laser pulse stretcher designs on compromising total 

energy delivery to tissue and fiber damage threshold. 

 

5.2 Methods  

5.2.1 Simulation method 

        The MATLAB k-Wave toolbox 
31

 was used to simulate the time-domain 

photoacoustic signal and the fast Fourier transform (FFT) was applied to obtain the 

frequency domain spectrum. The k-Wave simulation functions are based on a k-space 
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pseudo-spectral time domain solution to couple first-order acoustic equations for 

homogenous and heterogeneous media. In our k-Wave simulations, a Gaussian pulse 

beam was uniformly applied to a disc target and a single-element sensor was used to 

detect the acoustic wave within a two-dimensional homogeneous medium. To simulate 

the effects of the limited bandpass of the transducers, different Gaussian bandpass filers 

were applied to the frequency domain of the simulated time-domain photoacoustic 

signals. Three different ultrasound transducers of center frequencies of 1.3 MHz, 3.5 

MHz and 6 MHz with fractional bandwidths of 120%, 80%, 80%, respectively, were used 

in the simulations. Transducers in the central frequency range of 3 MHz-10 MHz are 

typically used in clinical ultrasound systems. Transducers in the lower frequency range of 

1-2 MHz are often used by the research community for photoacoustic imaging 

applications. 

 

5.2.2 Ring-cavity pulse stretching system  

        One way to achieve the objective of reducing the laser peak intensity with only a 

minimal energy loss is to use the pulse stretcher realized by an optical triangular ring 

cavity 
21

. As shown in Figure 5-1, an initial input laser pulse 0( )I t
 
is partially reflected by 

a fractional amount of RBS and partially transmitted by (1-RBS) through the beam splitter, 

where RBS is the reflectivity of the beam splitter. This transmitted pulse circulates inside 

the ring cavity and is then reflected and transmitted again and again by the beam splitter. 

The successive laser pulses from the ring cavity have optical delay times of  , 2 , …, 

k , where k is an integer which represents the number of round trips in the ring cavity. 
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As a result, the initial input laser pulse is divided into many pulses with different optical 

delay times, so the output laser pulse I(t) is given by the superposition of each smaller 

amplitude pulses to achieve the pulse stretching. This is shown by the equation:  

                         

2 2

0 0 0

2 1

0 0

1

( ) ( ) (1 ) ( ) (1 ) ( 2 )

( ) (1 ) ( )

BS BS BS BS

K
k

BS BS BS

k

I t R I t R I t R R I t

R I t R R I t k

 





         

   
       (5-1) 

 

        For pulsed lasers in the range of micro-second to nano-second, the energy density 

varies as a function of the square root of the pulse duration, and the laser damage 

threshold is given by Equation 5-2 
 32,33 

:  

                                                       ( ) ( )
Y

LDT Y LDT X
X

                                          (5-2) 

where LDT is the laser damage threshold, X is original pulse duration, and Y is the new 

pulse duration. Therefore, the fiber input end damage threshold is proportional to the 

square root of the laser pulse width. 

 

Figure 5-1. Schematic of laser pulse stretching system based on a triangular ring 

cavity. M: mirror, BS: beam splitter. 
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5.2.3 Experimental setup  

        The photoacoustic imaging experimental setup is shown in Figure 5-2. A Ti:sapphire 

laser (Symphotics TII, LS-2134) pumped with a Q-switched Nd:YAG laser (Symphotics 

TII, LS-2122)  operated at a wavelength of 745 nm with a FWHM of 17 ns and a 

repetition rate of 15 Hz. The laser beam was expanded with a Galilean telescope and then 

reflected into cavity of the triangular ring pulse stretcher. The beam splitter had a 

reflectivity / transmission ratio of 40/60, and the ring cavity length was 4.5m. The energy 

throughput of the pulse stretcher was 92%. Most of the 8% energy loss resulted from the 

divergence of the laser beam, which expanded the beam size beyond that of the mirrors 

and beam splitter. The use of larger-size optical components will significantly decrease 

the loss. A 0.5 mm-diameter music wire, and tube of inner diameter 0.58 mm and outer 

diameter 0.97 mm filled with rat blood were used as targets to generate photoacoustic 

waves. Two sets of experiments were performed to compare photoacoustic measurement 

data and image quality obtained with the original and stretched laser pulses. In the 

photoacoustic measurement experiment, a broadband hydrophone (Force Institute, 

Copenhagen) with a flat frequency response from 1 to 10 MHz was used. Its output was 

amplified by a Panametrics receiver (Panametrics 5072PR) and sampled by a digital 

oscilloscope of 300 MHz bandwidth (Tektronix, TDS3032). The corresponding bandpass 

filters were applied in software to simulate the transducers. In the photoacoustic imaging  

experiment, three ultrasound transducers centered at 1.3 MHz (Vermon, France), 3.5 

MHz (GE, Medical Systems), 6 MHz (W.L. Gore&Associates Inc) of 120%, 80%, 80% 

fractional bandwidth were used respectively. Both the wire and tube were imaged in the 

transverse directions. The receiving electronics consisted of 64 parallel pre-amplifiers of 



 

 54 

20 dB gain and outputs of the pre-amplifiers were multiplexed to two parallel channels 

for further amplification, low pass filtering and analog-to-digital (A/D) conversion. The 

system was controlled with a custom C-language software on the host computer through 

the two digital I/O cards connected to the A/D. Delay and sum beamforming algorithm 

was used for photoacoustic image reconstruction.  

 

Figure 5-2. Experimental setup of photoacoustic imaging using stretched laser 

pulse. M: mirror, BS: beam splitter. 

 

5.2.4 Imaging quality comparison   

        To quantitatively compare the image quality using the original and stretched pulses, 

the image contrast and resolution were calculated from the target response. The beam line 

across the center of the target was extracted. The ratio of peak value and the averaged 

background value was used to estimate the contrast, and FWHM was used to estimate the 

temporal resolution.   
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5.3 Simulation and experimental results 

5.3.1 Simulations 

        The photoacoustic spectrum is affected by using laser pulses of different widths and 

targets of different sizes. Figure 5-3 shows the FFT of photoacoustic signals obtained 

with FWHM of 6 ns and 50 ns laser pulses of both the same energy. Figure 5-3 (a) and 5-

3 (b) show the results of using 0.25 mm and 2 mm diameter targets respectively. For the 

0.25 mm-diameter target, the spectrum shifted to a lower frequency range and a small 

fraction of the amplitudes of both the lower and higher frequency components was lost as 

the pulse width increased. For the 2 mm-diameter target, the amplitudes of the lower 

frequency components were almost the same but that of the higher frequency components 

decreased a little as the pulse width increased. In general, the photoacoustic signal 

generated by the 6 ns laser pulse was higher than that generated by 50 ns laser pulse, 

which was due to the more efficient acoustic wave generation achieved by shorter pulses 

34
. In addition, by comparing Figure 5-3 (a) with 5-3 (b), the main peak of the spectrum 

shifted to a lower frequency as the target size was increased.  
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Figure 5-3. Frequency-domain photoacoustic signals obtained with 6 ns and 50 

ns laser pulses. (a) 0.25 mm-diameter target, (b) 2 mm-diameter target. 

 

        To systematically study the pulse width effect, photoacoustic signals obtained with 

equal-energy pulse widths ranging from 6 ns to 50 ns were simulated using MATLAB k-

Wave toolbox. In the simulations, different target sizes with diameters of 4 mm, 2 mm, 1 

mm, 0.5 mm and 0.25 mm were used to generate photoacoustic signals. The 

photoacoustic signal was simulated by integrating the frequency domain signals that can 

be received by each ultrasound transducer. The results using the three transducers are 

shown in Figure 5-4 (a), 5-4 (b) and 5-4 (c) respectively. The left y-axis of each figure 

represents the photoacoustic signals, which are normalized to the photoacoustic signal 

obtained with the 6 ns laser pulse. The right y-axis represents the fiber damage threshold, 

which is normalized to the fiber damage threshold by using 6 ns laser pulse. If other 

conditions are fixed, the fiber damage threshold is proportional to the square root of the 

laser pulse width based on Equation 5-2. For all the three transducers, the photoacoustic 

signals decreased as the pulse width increased; at the same time, the fiber damage 

threshold increased. Compared to the 6 ns pulse, the photoacoustic signals obtained with 
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the 50 ns pulse was more than 94%, 75%, 58% for the 1.3 MHz, 3.5 MHz, 6 MHz 

transducers respectively. Following this, the fiber damage threshold increased by 2.9-

fold. In some cases, the laser pulse might not need to be stretched that much as from 6 ns 

to 50 ns, so that the photoacoustic signal was almost not affected. For example, if 

stretching the laser pulse from 6 ns to 14 ns, the photoacoustic signal of 0.5 mm-diameter 

target obtained by 1.3 MHz, 3.5 MHz, 6 MHz transducer was about 99.1%, 97.9%, 

95.7% respectively after stretching the pulse, and as a reward, the fiber damage threshold 

was increased by 1.5-fold. These results are useful for designing a laser pulse stretcher in 

order to increase the fiber damage threshold to ensure that higher laser energy can be 

delivered to the imaged tissue by fibers. Figure 5-4 also shows that the photoacoustic 

signals were less sensitive to target size for the three types of transducers and the range of 

target sizes evaluated.  

 

5.3.2 Experimental results 

        The triangular ring-cavity laser pulse stretching system stretched the initial 17 ns 

(FWHM) laser pulse to 27 ns and 37 ns laser pulses as shown in Figure 5-5. The peak 

intensity of the 27 ns and 37 ns laser pulse was reduced to about 58% and 42% of the 

initial 17 ns pulse, and the fiber damage threshold was increased by 1.3-fold and 1.5-fold 

respectively. 
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Figure 5-4. Simulations of normalized photoacoustic signal and normalized fiber 

damage threshold versus laser pulse width. The photoacoustic signal was 

obtained with (a) 1.3 MHz transducer, (b) 3.5 MHz transducer, (c) 6 MHz 

transducer. 
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Figure 5-5. Profile of laser pulses. (a) Initial 17 ns laser pulse, (b) stretched 27 ns 

laser pulse, (c) stretched 37 ns laser pulse. 

 

5.3.2.1  Experimental validations 

        The simulations were validated using a hydrophone. The photoacoustic signals of 

the 0.5 mm-diamter music wire obtained with pulse widths of 17 ns, 27 ns and 37 ns all 

having the same energy, and the aforementioned transducers are shown in Figure 5-6. 

The corresponding bandpass filters were applied to the photoacoustic signals received by 

hydrophone and averaged over four experimental data. The left y-axis of each figure 

corresponds to the normalized photoacoustic signals, and the right y-axis corresponds to 

the normalized fiber damage threshold. The experimental results show that using the 1.3 

MHz transducer, the photoacoustic signals obtained with the 27 ns and 37 ns stretched 

pulse are about 96.7% (std 7.0%) and 95.8% (std 4.7%) respectively of the initial 17 ns 

laser pulse, and agree well with the simulation results of 99.2% and 97.9%. Again for the 

3.5 MHz transducer, the photoacoustic signals obtained with those stretched pulses are 

about 97.6% (std 5.8%) and 90.6% (std 3.5%) of the initial 17ns laser pulse; this also 

agrees well with the simulation results of 96.0% and 90.7%. Finally, for the 6 MHz 

transducer, the photoacoustic signals obtained with the stretched pulses are about 95.5% 

(a) (c)(b)
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(std 7.2%) and 83.7% (std 8.8%) of the initial 17 ns laser pulse; this agrees well with the 

simulation results of 90.8% and 79.5%. At the same time, by stretching the laser pulse to 

27 ns and 37 ns, the fiber damage threshold was increased by 1.3-fold and 1.5-fold, 

which is significant in delivering higher energy laser light to image deeply-seated targets. 

Both simulation and experimental results indicate that by stretching the laser pulse from 

17 ns to 37 ns, the fiber damage threshold is improved without much loss of 

photoacoustic signal. 

 

5.3.2.2 Imaging comparisons 

        The photoacoustic images of 0.5 mm-diameter music wire obtained with pulse 

widths of 17 ns and 37 ns having the same energy, and the aforementioned transducers 

are shown in Figure 5-7 (a) and 5-7 (b), 5-7 (c) and 5-7 (d), 5-7 (e) and 5-7 (f) 

respectively in log-scale. The dynamic range of the image was set to 30dB. The scan 

section of the transducer was placed perpendicular to the target during imaging. The 

image quality was not affected by stretching the pulse by visually comparing those 

images.  
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Figure 5-6. Simulations and experimental results of normalized photoacoustic 

signal and normalized fiber damage threshold versus laser pulse width. The 

photoacoustic signal was obtained with (a) 1.3 MHz transducer, (b) 3.5 MHz 

transducer, (c) 6 MHz transducer. 
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Figure 5-7. Photoacoustic images of 0.5 mm-diameter music wire obtained with 

(a) 1.3 MHz transducer, 17 ns laser pulse; (b) 1.3 MHz transducer, same energy 

of stretched 37 ns laser pulse. (c) 3.5 MHz transducer, 17 ns laser pulse; (d) 3.5 

MHz transducer, same energy of stretched 37ns laser pulse. (e) 6 MHz 

transducer, 17ns laser pulse; (f) 6 MHz transducer, same energy of stretched 37ns 

laser pulse. 
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        The photoacoustic images of blood tube obtained with pulse widths of 17 ns and 37 

ns having the same energy, and the aforementioned transducers are shown in Figure 5-8 

(a) and 5-8 (b), 5-8 (c) and 5-8 (d), 5-8 (e) and 5-8 (f) respectively in log-scale. Similar as 

the images of music wire, the image quality of the blood tube was not affected by 

stretching the pulse by visually comparing those images. Note that the images of Figure 

5-7 (c)-(d) and Figure 5-8 (c)-(d) were slightly defocused. This 3.5 MHz transducer was 

designed for cardiac imaging and had the acoustic lens of 7 cm elevation focal depth.  

However, the targets were located around 2 cm for comparison with the images obtained 

by 1.3 and 6 MHz linear arrays with the elevation focal depth fixed at 2 cm. 

        The image contrast and resolution were calculated to compare the image quality 

quantitatively. Figure 5-9 illustrates the contrast and resolution calculation. Figure 5-9 (a) 

shows the beam line across the center of the target image. The signal in the dash 

rectangular area was the background, and the contrast was estimated by calculating the 

ratio of the peak value and the averaged background value. Figure 5-9 (b) is the zoomed 

in portion of solid rectangular area in Figure 5-9 (a). The FWHM was calculated to 

estimate the temporal resolution. The quantitative comparison results are shown in Table 

5-1. Three averages were done for each ratio. For both music wire and blood tube targets, 

the contrast and the resolution did not show much difference between 17 ns and 37 ns 

laser pulses.  
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Figure 5-8. Photoacoustic images of blood tube obtained with (a) 1.3 MHz 

transducer, 17 ns laser pulse; (b) 1.3 MHz transducer, same energy of stretched 

37 ns laser pulse. (c) 3.5 MHz transducer, 17 ns laser pulse; (d) 3.5 MHz 

transducer, same energy of stretched 37 ns laser pulse. (e) 6 MHz transducer, 17 

ns laser pulse; (f) 6 MHz transducer, same energy of stretched 37n s laser pulse. 
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Figure 5-9. The beam line across the center of the target. (a) Illustration of 

contrast calculation. (b) Zoomed in of solid rectangular area in 5-9 (a) to 

illustrate resolution calculation. 

        By stretching the laser pulse from 17 ns to 37 ns, the fiber damage threshold 

increased by 1.5-fold. Therefore, the upper limit energy that can be delivered by the fiber 

also increased by 1.5-fold. If MPE is not exceeded, higher energy can be coupled into the 

fiber, so that higher energy can be delivered to the imaged tissue by stretching the laser 

pulse. Figure 5-10 shows the comparisons of music wire images using 17 ns pulse and 

1.5-fold energy of stretched 37 ns pulse. Similar as the quantitative comparison in Table 

5-1, Table 5-2 shows the contrast and resolution ratio of 1.5-fold energy of stretched 37 

ns pulse and initial 17 ns pulse. In this case, the image contrast is improved after 

stretching the pulse.   
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Figure 5-10. Photoacoustic images of 0.5 mm-diameter music wire obtained with 

(a) 1.3 MHz transducer, 17 ns laser pulse; (b) 1.3 MHz transducer, 1.5-fold 

energy of stretched 37 ns laser pulse. (c) 3.5 MHz transducer, 17 ns laser pulse; 

(d) 3.5 MHz transducer, 1.5-fold energy of stretched 37 ns laser pulse. (e) 6 MHz 

transducer, 17 ns laser pulse; (f) 6 MHz transducer, 1.5-fold energy of stretched 

37 ns laser pulse. 
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Table 5-1. Photoacoustic image quality comparison using same energy of 17 ns 

and 37 ns pulses. Contrast (resolution) ratio = Contrast (resolution) obtained with 

37 ns laser pulse / 17 ns laser pulse. (a) Music wire comparison. (b) Blood tube 

comparison. 

(a)  

 

 Contrast ratio (Std) Resolution ratio (Std) 

1.3MHz transducer 0.976 (0.010) 0.987 (0.011) 

3.5MHz transducer 0.929 (0.035) 1.076 (0.069) 

6MHz transducer 0.892 (0.007) 0.979 (0.036) 

 

(b)  

 Contrast ratio (Std) Resolution ratio (Std) 

1.3MHz transducer 0.991 (0.005) 0.993 (0.012) 

3.5MHz transducer 0.932 (0.025) 0.991 (0.032) 

6MHz transducer 0.892 (0.026) 1.012 (0.020) 

 

Table 5-2. Photoacoustic image quality comparison using 17 ns and 1.5-fold 

energy of 37 ns pulses. 

 Contrast ratio (Std) Resolution ratio (Std) 

1.3MHz transducer 1.477 (0.067) 1.000 (0.020) 

3.5MHz transducer 1.334 (0.033) 1.020 (0.057) 

6MHz transducer 1.264 (0.030) 0.976 (0.041) 
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5.4 Discussion and summary 

        A series of simulations and experiments have been completed to investigate the laser 

pulse stretching effect on photoacoustic imaging. The results presented for the laser pulse 

width range and target size range show that by stretching the laser pulse, the image 

quality is not affected and the fiber damage threshold is increased. This helps protect the 

fiber input face during high-energy photoacoustic imaging of deeply-seated tissue. 

Provided the MPE is not exceeded, higher energy can be coupled into the fiber for 

delivery to the imaged tissue to improve the signal-to-noise ratio. In addition, some of the 

8% energy loss during pulse stretching resulted from the divergence of the laser beam, 

which was not fit for our current mirror and beam-splitter size. If we use larger size of 

mirrors and beam splitter, this triangular ring-cavity laser pulse stretcher would have 

higher energy efficiency, and the only energy loss could come from the slight loss of 

mirrors and beam splitter. One other problem of the ring-cavity pulse stretching system 

right now is that it is bulky for clinical use as the cavity length used for the pulse 

stretching was 4.5 m. To solve this problem, we plan to use laser pulse stretcher made 

from fibers 
35

. The laser beam was split to many parts, and then input into fibers with 

different lengths to induce optical delays, and the output laser light with different optical 

delays recombined together to generate a longer pulse with the same total energy.  

        The simulation and measurement reported in this paper have focused on the 6 ns-50 

ns pulse width range and the 0.25 mm-4 mm target diameter range which is about 

ultrasound wavelength for typical 1 to 8 MHz transducers. In this range of target size, the 

stress confinement condition is stringently satisfied. The pulse stretching effect on the 

detected photoacoustic signals is less sensitive to target properties, including the size, the 
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absorption and scattering properties. However, if the optical penetration depth in the 

target or the fully penetrated target size is smaller than the range studied, the 

photoacoustic signals will be affected more by stretching the laser pulse. The detected 

photoacoustic signals depend on the target sizes or optical penetration depth (whichever 

is smaller) and ultrasound transducer central frequencies.  

        In summary, we report a laser pulse stretching scheme for efficiently delivering laser 

energy to tissue while reducing the peak intensity for minimizing the fiber damage. To 

demonstrate the principle, we have compared photoacoustic signals and images obtained 

with 17 ns, and the stretched 27 ns, 37 ns laser pulses. The peak power of the stretched 37 

ns pulse was reduced to 42% of the original pulse to significantly reduce the damage of 

the input fiber. Simulations and experimental results showed that the stretching technique 

increased the fiber damage threshold and the image quality was not affected.  
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6 Photoacoustic microscopy for ovarian cancer 

detection 
1
 

 

6.1 Introduction  

        Photoacoustic imaging has emerged as a promising biomedical imaging modality 
2-4 

and demonstrated great potential for imaging ovarian tissue 
5-8

. Photoacoustic microscopy 

(PAM) in particular, is capable of mapping microvasculature networks in biological 

tissue and resolving blood vessels with much higher resolution than conventional 

photoacoustic images obtained with ultrasound array transducers 
9-24

. Guo et al. 

performed the quantification of total hemoglobin concentration and hemoglobin oxygen 

saturation in a mouse using PAM 
23

. Xie at al. studied the feasibility of PAM in 

differentiating malignant from benign bladder tissues 
24

. In their study, the comparison of 

malignant and benign images was based on visual observations. Alqasemi et al. have 

introduced a recognition algorithm using a support vector machine for assisting ovarian 

cancer diagnosis, and they used features extracted from ultrasound and photoacoustic 

images obtained from array transducers of 5-6 MHz central frequency 
7
. However, 

photoacoustic images obtained with conventional ultrasound array transducers in the 

central frequency range of 3-7 MHz have lower resolution in resolving microvasculature 

networks and distributions in ovarian tissue than that of PAM. In this chapter, we imaged 

ex vivo human ovaries with malignant and benign features using a newly developed OR-

PAM system with lateral resolution of 6 µm. We extracted seven features from high 
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resolution PAM images, and used a logistic model to classify the normal and malignant 

ovarian tissues. We also evaluated the diagnostic sensitivity, specificity, positive and 

negative predictive values (PPV, NPV) and the area under the receiver operating 

characteristic (ROC) curves (AUC). To the best of our knowledge, this study is the first 

one reporting quantitative analysis and feature extraction of PAM images for classifying 

normal and malignant ovarian tissues. Quantitative analysis of PAM images is extremely 

valuable in assisting physicians to characterize and diagnose normal and malignant 

processes. 

 

6.2 Materials and methods   

6.2.1 Ovary sample 

        Human ovaries were extracted from patients undergoing prophylactic oophorectomy 

at the University of Connecticut Health Center (UCHC). These patients were at risk for 

ovarian cancer or they had ovarian mass or pelvic mass suggesting malignancy. This 

study was approved by the Institutional Review Boards of UCHC, and informed consent 

was obtained from all patients. Ovaries were kept in the 0.9% wt/vol NaCl solution and 

imaged within 24 hours after oophorectomy. After PAM imaging, the ovaries were fixed 

in 10% formalin solution and returned to the Pathology Department for histological 

processing. 
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6.2.2 PAM system 

        The OR-PAM system configuration is shown in Figure 6-1. A Ti:sapphire laser 

pumped by a Q-switched Nd:YAG laser delivers 15 ns laser pulses at 745 nm with a 

repetition rate of 15 Hz. The laser beam is spatially filtered by an iris, and then focused 

on the ovary by using a 10X objective lens (NA = 0.25). Ultrasound (US) gel is used to 

couple the photoacoustic signal to a single element transducer (Echo, BI933) with a 

center frequency of 3.5 MHz and a bandwidth of 60%. The acquired photoacoustic signal 

is amplified by a Panametrics receiver and then sampled by a data acquisition (DAQ) PC. 

A 3D motor is used to scan the transducer together with the ovary to obtain PAM images, 

and the distance between the objective lens and the ovary can be adjusted to achieve 

optimal resolution.  

 

Figure 6-1. Configuration of the OR-PAM system. 
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6.2.3 Feature extraction 

        Several features were quantitatively extracted from the PAM images to classify 

normal and malignant ovaries, based on the observed differences between the PAM 

images of normal and malignant ovarian tissues in terms of microvasculature features and 

distributions. For example, the photoacoustic signal distribution is more scattered and 

diffuse in malignant cases, whereas the distribution is more clustered and the 

microvasculature networks are more clearly recognized in normal cases. These results 

suggest that the spatial frequency components, and the spatial spread of the PAM images 

are important. This observation also suggests that the statistical properties of the PAM 

images are of great importance to account for the photoacoustic signal fluctuation. In 

Reference 7, both statistical mean and variance were used as features to characterize 

normal and malignant ovarian tissues. However, the difference of statistical variance 

between normal and malignant PAM images was not significant (p = 0.618), and the 

diagnostic results based on PAM images were getting worse by adding this feature. 

Therefore, the statistical variance was not used in this study. Overall, seven parameters 

were extracted from PAM images: low frequency components, high frequency 

components, Gaussian fitting standard deviation (SD) of the mean Radon transform, 

Gaussian fitting error of the mean Radon transform, statistical mean, Gamma distribution 

mean and variance. Similar to the method used to extract features from B-scan ultrasound 

and photoacoustic images in Reference 7, all the 1.5 mm x 1.5 mm PAM images were 

normalized to their own maximum. The low frequency and high frequency components 

were calculated by selecting a low-pass window of the 2-D fast Fourier transform (FFT) 

with half of the sampling frequency. The average absolute value within that window was 
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considered as low frequency component, while the average absolute value outside that 

window was considered as high frequency component. The average Radon transform 

from 0 degree to 90 degree was computed, and then fit to a Gaussian distribution. The 

Gaussian fitting SD was used to describe the spatial spread of the images, and the fitting 

error was used to describe the uniformity of the tissue absorption. The statistical 

properties were studied by calculating the statistical mean of the images. In addition, 

Gamma distribution mean and variance were calculated to account for those images that 

were not symmetrically distributed. 

 

6.2.4 Logistic model 

        Logistic regression belongs to the class of generalized linear model (GLM) based on 

the exponential distribution family. It is a statistical model that can describe the 

relationship of several predictor variables to a dichotomous response variable (0 or 1). 

The logistic model was used to classify normal and malignant ovarian tissues. The seven 

parameters extracted from PAM images were used as predictor variables, and actual 

diagnosis results were used as the response variable (1 represents malignant and 0 

represents normal). The MATLAB GLMFIT function was used to estimate the 

coefficients of the linear model, and then those coefficients were applied to the 

MATLAB GLMVAL function to calculate the responses. The quality of the logistic 

model was evaluated using ROC curve and AUC.  
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6.3 Results and discussion 

6.3.1 Lateral resolution test 

        The lateral resolution of the PAM system was tested by imaging a 7 µm diameter 

carbon fiber. Figure 6-2 (a) shows the PAM maximum amplitude projection (MAP) 

image, and Figure 6-2 (b) shows normalized cross-sectional profile of the carbon fiber 

along the dotted line in Figure 6-2 (a). The full width at half maximum (FWHM) was 

estimated to be 13 µm. The subtraction value of FWHM and the carbon fiber diameter 

was used to estimate the lateral resolution of the system 
13

. Therefore, the lateral 

resolution of the PAM system is ~6 µm. The axial resolution is ~360 µm, which is 

limited by the bandwidth of the transducer. The imaging quality of the PAM system was 

tested by imaging a mouse ear, as shown in Figure 6-3. 

 

Figure 6-2. (a) PAM MAP image of a 7 µm carbon fiber, scale bar: 50 µm; (b) 

normalized cross-sectional profile of the carbon fiber along the dotted line in (a). 
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Figure 6-3. PAM MAP image of a mouse ear. 

 

6.3.2 Ovarian tissue characterization 

        Some PAM images of normal and malignant ovarian tissues are presented in Figure 

6-4 (a) and 6-4 (b), respectively. As shown by the MAP images, PAM was capable of 

imaging detailed microvasculature maps in ovarian tissue with much higher resolution 

than that of conventional photoacoustic images obtained with ultrasound array 

transducers 
6-8

. In the normal ovarian tissue, the microvessel network consists of a larger 

vessel and several branching small vessels. The network shows more regular shape and 

better continuity, and these vessels are well organized. However, in the malignant ovarian 

tissue, the photoacoustic imaging features are diffuse and scattered which are likely 

caused by the extensive angiogenesis associated with malignancy of the ovary. The 

corresponding histology images of 6-4 (a) and 6-4 (b) are shown in Figure 6-4 (c) and 6-4 

(d), respectively. The PAM images of both the normal and malignant ovaries match the 

histology. Based on the histology, the blood vessels in normal ovarian tissue form 

structured microvasculature networks, from large vessels to smaller ones, which are 

 

 

1 2 3 4

0.5

1

1.5

2

2.5

3

3.5

4 0

2

4

6

8

10

12

14

16

18

20

1mm



 

 79 

different from the scattered distributions seen in malignant ovary. For the malignant case, 

PAM image shows more blood vessels than histology image. The reason is that the PAM 

image is the maximum amplitude projection from multiple depths, while the histology 

image shows only one of the projected planes at a certain depth.  

 

Figure 6-4. PAM images of (a) normal ovarian tissue and (b) malignant ovarian 

tissue; (c) H&E corresponding to (a); (d) H&E corresponding to (b); scale bar: 

300µm; arrows: blood vessels. 
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transform of Figure 6-4 (b). The Gaussian fitting error of the malignant example shown 

in Figure 6-5 (b) is larger than that of the normal one shown in Figure 6-5 (a). 

 

 

Figure 6-5. (a) Mean Radon transform and Gaussian fitting of Figure 6-4 (a), 

fitting SD: 74, fitting error: 1.5; (b) mean Radon transform and Gaussian fitting 

of Figure 6-4 (b), fitting SD: 91, fitting error: 8.3. 
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Perhaps this was due to the diverse normal samples, for the normal group, the range of 

patient age was 43-77; for the malignant group, the range of patient age was 58-71. The 

seven parameters were used as predictor variables of the logistic model to classify normal 

and malignant ovaries. We separated all images into two groups, 57 images (38 normal 

and 19 malignant) were used as a training set to train the logistic classifier, and 49 images 

(32 normal and 17 malignant) were tested using our trained logistic prediction model. 

Figure 6-7 shows the ROC curves and AUC of training and testing set. For the training 

set, we could achieve 92.1% specificity, 89.5% sensitivity, 85.0% PPV, 94.6% NPV, and 

AUC (95% confidence interval) equals to 0.940 (0.869-1); for the testing set, we could 

achieve 81.3% specificity, 88.2% sensitivity, 71.4% PPV, 92.9% NPV, and AUC (95% 

confidence interval) equals to 0.886 (0.792-0.980). 

        The training and testing results are based on a limited sample pool, so more data will 

be acquired to validate these initial results. As a preliminary study, all ovarian tissue 

imaging was conducted ex vivo. For translating this technique from bench to bedside, a 

PAM system with a fiber catheter will replace free-space imaging for in vivo evaluation 

of ovarian tissue. In addition, the data acquisition speed of the current system is limited 

by the laser repetition rate of 15 Hz; by using a laser-diode based PAM system, the data 

acquisition speed can be increased by modulating the laser diode to ~kHz or even to 

~MHz level.  
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Figure 6-6. Boxplots of (a) low frequency; (b) high frequency; (c) Gaussian 

fitting SD; (d) Gaussian fitting error; (e) statistical mean; (f) Gamma mean; (g) 

Gamma variance. 

Figure 6-7. ROC curves of (a) training set; (b) testing set. 
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6.4 Photoacoustic microscopy with a laser diode excitation 

        The light source of the PAM system described in Section 6.2.2 is a Ti:sapphire laser 

pumped by a Q-switched Nd:YAG laser. The popularity of the PAM system is limited by 

the size and the cost of the solid-state laser source. A new PAM system based on a laser 

diode excitation is developed. The compact and low cost of the laser-diode-based PAM 

system would promote the potential clinical applications. The laser-diode PAM system is 

shown in Figure 6-8. The basic system configuration is similar to PAM system using 

Ti:Sapphire laser excitation. A pulsed laser diode (Laser Components) with wavelength 

of 905nm and output peak power of 130 W is used as an excitation source. The pulse 

repetition rate is 1 KHz, and the pulse width is 124 ns, as shown in Figure 6-9. The laser 

beam is collimated using a collimation tube (Thorlabs), and then focused on the imaged 

sample by using a 60X objective lens (NA = 0.7).  

 

Figure 6-8. Configuration of the laser-diode PAM system. 
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Figure 6-9. Profile of the diode laser; the pulse width is 124 ns. 

        The black-thread mesh was imaged using this newly-developed laser-diode PAM 

system. The MAP image of the thread mesh is shown in Figure 6-10. The carbon fiber 

and mouse ear will be imaged to further test this new system performance, and then the 

ovarian tissue will be imaged and characterized. The size and the cost of the laser-diode 

PAM system is significantly reduced compared with the solid-state-laser PAM system. 

 

Figure 6-10. MAP image of black-thread mesh obtained by laser-diode PAM.  
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6.5 Summary 

        In this chapter, ex vivo ovarian tissue was imaged by using an OR-PAM system, and 

quantitative analysis was performed by extracting features from PAM images. The initial 

results have demonstrated that PAM was capable of imaging microvasculature maps in 

ovarian tissue. By utilizing a seven-parameter logistic model to classify PAM images of 

normal and malignant ovaries, we could achieve 92.1% specificity and 89.5% sensitivity 

in the training set, and 81.3% specificity and 88.2% sensitivity in the testing set. 

Meanwhile, a novel low-cost and compact PAM system based on laser-diode excitation is 

developed. The high resolution microvasculature network features extracted from PAM 

images could be extremely valuable in assisting and guiding surgeons for in vivo 

evaluation of ovarian tissue during minimally invasive surgery.  
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7 Conclusions and future work 

        In this dissertation, optical and photoacoustic imaging were investigated for ovarian 

cancer detection and characterization. Polarization-sensitive optical coherence 

tomography (PS-OCT) and photoacoustic microscopy (PAM) systems were developed. 

Tissue-related features were quantitatively extracted from PS-OCT and PAM images, and 

applied to a logistic prediction model for ovarian tissue diagnosis.    

        In the first study, optical scattering coefficient was quantitatively estimated by 

fitting conventional OCT signal to a single scattering model; 86% sensitivity and 100% 

specificity were achieved. Phase retardation was calculated from PS-OCT phase 

retardation image; 43% sensitivity and 100% specificity were achieved. Combining 

optical scattering coefficient and phase retardation for each ovary, a superior sensitivity 

of 100% and a specificity of 100% were achieved. Collagen content as assessed by Sirius 

Red staining correlates strongly with optical scattering coefficient and phase retardation.  

        In the second study, the phase retardation rate quantitatively extracted from PS-OCT 

has significantly improved the ovarian cancer diagnosis when it was used together with 

optical scattering coefficient and phase retardation. By using a new three-parameter 

logistic prediction model, we achieved 100% sensitivity and specificity in the training 

group; 100% sensitivity and 83.3% specificity in the testing group. The results 

demonstrated that the three-parameter prediction model based on PS-OCT could be a 

powerful tool to characterize ovarian tissue. A more compact PS-OCT system based on 

polarization-maintaining fiber was built.  

        In the third study, we designed a laser-pulse stretching scheme for efficiently 

delivering laser energy to tissue while reducing the peak intensity for minimizing the 
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fiber damage in photoacoustic imaging. To demonstrate the principle, we compared 

photoacoustic signals and images obtained with 17 ns, and the stretched 27 ns and 37 ns 

laser pulses. The peak power of the stretched 37 ns pulse was reduced to 42% of the 

original pulse to significantly reduce the damage of the input fiber. Simulations and 

experimental results showed that the stretching technique increased the fiber damage 

threshold without affecting the image quality. On the other hand, considering the 

increased fiber damage threshold, higher energy can be coupled into fiber and delivered 

to the imaged tissue to improve the signal-to-noise ratio. 

        In the last study, ovarian tissue with malignant and benign features was imaged by 

using an optical-resolution PAM system, and quantitative analysis was performed by 

extracting features from PAM images. The results have demonstrated that PAM was 

capable of imaging microvasculature maps in ovarian tissue. By utilizing a seven-

parameter logistic model to classify PAM images of normal and malignant ovaries, a 

sensitivity of  89.5% and a specificity of 92.1% were achieved in the training set; a 

sensitivity of 88.2% and a specificity of 81.3% were achieved in the testing set. 

Meanwhile, a compact and low-cost PAM system with laser diode excitation is built and 

tested. The high resolution microvasculature network features extracted from PAM 

images could be extremely valuable in assisting and guiding surgeons for characterizing 

ovarian tissue. 

        OCT and photoacoustic imaging have demonstrated great potential for ovarian 

cancer detection. Future efforts will be devoted to developing catheter-based probes for 

PS-OCT and PAM for in vivo inspection of ovaries during minimally invasive surgery. In 

addition, a multi-modality imaging system combining PS-OCT and PAM is under 
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construction. Given that the promising diagnosis results achieved by using PS-OCT or 

PAM individually, a combined PS-OCT and PAM could provide more information, and 

further improve the sensitivity and specificity for ovarian cancer diagnosis.  
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