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Colon cancers harbor a variety of mutations that result in uncontrolled proliferation and 

suppression of apoptotic pathways. The initial objective of our work was to understand how 

colon cancer cells survive their inflammatory micro-environment, including high levels of TNF 

and other death ligands.  Towards this goal, we identified a series of mitotically acting 

piperazine-based compounds that sensitized colon cancer cells to TNF-dependent apoptosis. The 

most potent of these compounds, 1-(3-chlorophenyl)-4-(2-ethoxybenzoyl)piperazine or AK301, 

arrested cells in a mitotic state (EC50 ≈ 115 nM) in which the TNF receptor was efficiently 

coupled to caspase-8 activation. Our structure-activity relationship studies predicted AK301 

binding to β-tubulin in a novel orientation that reduced the rate of tubulin polymerization. These 

data suggested that targeting mitosis may be an effective approach for sensitizing cancer cells to 

their inflammatory microenvironment. Further study of the activity of AK301 showed that p53-

normal colon cancer cells efficiently underwent apoptosis in the absence of death ligands 

following release from their mitotic arrest. Study of this effect indicated that AK301-treated cells 

showed high levels of ATM signaling during mitotic arrest and exit from mitosis, following 

compound withdrawal, resulted in a p53-dependent apoptosis. Interestingly, the apoptotic 

activity of AK301 was more apparent in APC mutant cells, suggesting that AK301 exacerbated 

the mitotic defects associated with an APC mutation. This work details the identification and 

structure-activity relationship studies of a new class of small molecule compounds and explores 

their anti-mitotic activity and provides a paradigm for exploiting molecular alterations in mutated 

cells. These findings could serve as a basis for the development of agents that target the 
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molecular alterations in mutated colon cancer cells and augment the apoptotic actions of their 

inflammatory microenvironment, for robust activation of apoptotic signaling. Understanding the 

mechanisms cancer cells use to suppress apoptosis may ultimately facilitate in the development 

of novel approaches to colon cancer treatment and prevention. 
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CHAPTER 1 

Introduction 

 

1.1. Colorectal cancer – prevalence and significance 

Colorectal cancer is the third most common cancer in the United States with an estimated 

1.3 million people being afflicted in the US alone in 2014 [1, 2]. It is the second leading cause of 

cancer-related deaths in the US, with an estimated 50,000 deaths in 2014 [2]. Periodic colon 

cancer screening and the removal of early polyps and other lesions has been demonstrated to 

reduce the risk of death from colon cancer by up to 53% [3, 4]. Screening exams can also find 

early cancers, which increases the likelihood of survival—five-year survival for patients 

diagnosed with colon cancer at an early stage is 74%, but drops to only 6% for metastatic colon 

cancer [3, 5]. For early (stage 1 lesions), surgery is usually sufficient to cure the disease. Some 

drug combinations, such as FOLFOX, are used along with surgery to treat more advanced colon 

cancers [6]. Unfortunately, these regimens have sere side effects and may not completely 

eliminate colon cancer. 

The U.S. Preventive Services Task Force (USPSTF) recommends regular screening for 

colorectal cancer beginning at age 50, by fecal occult blood testing, sigmoidoscopy, or 

colonoscopy [7]. Patients with familial adenomatous polyposis (FAP), hereditary non-polyposis 

colorectal cancer (HNPCC), or a family history of colon cancer are advised to undergo colon 

cancer screening earlier and more frequently (before the age of 50) [8, 9]. However, even with 

careful screening and treatment, the rate of colon polyp recurrence can be high. After three years, 

almost one third of the patients showing a polyp on an initial screening exam will have already 

developed another; after 5 years, this probability increases to ~50% [10]. These data indicate that 
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some individuals may be advised to undergo examinations even more frequently than every five 

years. These data have also prompted the search for strategies that can reduce the frequency of 

polyp development and progression to more advanced lesions. One such strategy is the use of 

chemopreventive agents. These agents could be administered to high risk individuals to 

complement cancer prevention provided by routine colonoscopy. 

Potential chemopreventive agents for colon cancer are often identified in epidemiological 

studies and then assessed in rodent models and human intervention studies by associating intake 

of a particular agent with reduced colon cancer risk [11-13]. This approach led to the 

identification of NSAIDs as chemopreventive agents for colon cancer [14, 15]. However, such 

studies are time-intensive and costly, and the results of these studies vary greatly based on an 

individual’s diet and lifestyle. An alternative approach to identifying chemopreventive agents 

would be to target aberrant pathways in mutated cells and select compounds that selectively 

induces apoptosis of mutated cells in culture. This approach could utilize specific oncogene and 

kinase inhibitors that selectively target cancer cells. Whether this approach will be safe and 

effective in vivo is not clear. The work in this dissertation focuses on understanding specific 

vulnerabilities of colon cancer cells and their precursors. We envision this knowledge leading to 

a better understanding of apoptotic signaling in colon cancer cells, which may in the long run 

lead to new strategies for treatment and prevention.   
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Table 1.1. Stage-wise five-year survival rates for colon cancer. 

The five-year survival at stage I colon cancer is high; the survival rates reduce dramatically with 

each subsequent stage (with the exception of stage IIIA [16]. 

Stage of colon cancer 5-year relative survival rate 

Stage I 92% 

Stage IIA 87% 

Stage IIB 63% 

Stage IIIA 89% 

Stage IIIB 69% 

Stage IIIC 53% 

Stage IV 11% 
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1.2. Apoptosis versus survival 

Apoptosis is vital for the development and homeostasis of metazoans, whereby damaged 

or infected cells are sacrificed for the integrity of the whole organism [17, 18]. It is component of 

normal cell turnover in tissues and is characterized by distinct morphological changes [18, 19]. 

Apoptosis is a highly coordinated and energy-dependent process with characteristic blebbing of 

the plasma membrane, distinct from other forms of cell death (necrosis and autophagy) [19-21]. 

This is followed by separation of apoptotic bodies by budding [19]. Apoptosis can be induced by 

immune system in response to damaged or diseased cells. However, different cells may respond 

differently to the same stimuli and conditions that invoke apoptosis. Apoptosis is critical for the 

survival of neighboring cells by eliminating damaged or infected cells [19]. Evasion of apoptotic 

signals through suppression of internal regulatory controls is one of the hallmark of cancers [22]. 

Suppression of apoptotic responses in transformed cells facilitates the growth and progression of 

neoplastic lesions [23, 24]. Several apoptotic proteins and pathways have been shown to be 

defective or suppressed in colon cancers, as a result of mutations as well as micro-environmental 

conditions within the lesion [25-28]. 

 

1.2.1. Extrinsic versus intrinsic apoptosis 

In mammalian cells, apoptosis can be subdivided into two categories – extrinsic and 

intrinsic apoptosis, depending on the origin of the death stimulus [19]. Extrinsic apoptosis is 

mediated by the death receptor/ligand coupling of the tumor necrosis factor receptor (TNFR) 

superfamily on the cell surface, such as TNFR1/TNF (TRADD), TRAIL/TRAIL-R (DR4 and 

DR5), and Fas/FasL (FADD) . Upon receptor-ligand complex formation, the death receptors can 

initiate signaling via receptor oligomerization. This results in recruitment of adaptor proteins and 
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activation of a cascade of caspases that culminates in the final demise of a cell [19, 27] (Figure 

1.1). Suppression of this pathway results in aberrant growth and survival signaling, leading to 

tumorigenesis [18, 26, 29]. Intrinsic apoptosis, on the other hand, is triggered in response to a 

wide variety of intracellular death stimuli, such as DNA damage and oncogene activation [19, 

27]. Intrinsic apoptosis is distinct from extrinsic apoptosis not only with respect to the death 

stimulus, but also in the mechanisms that carry out apoptosis. The intrinsic pathway is mediated 

by mitochondria; several proteins, including cytochrome c, are released from the mitochondrial 

intermembrane space. Cytochrome c activates and binds to APAF1, which allows for the 

formation of apoptosome and activation of caspase-9 and other downstream effector caspases 

[19] (Figure 1.1). It is important to note that even though the two apoptotic pathways operate by 

distinct mechanisms, they can crosstalk. For instance, caspase-8 (an extrinsic initiator caspase) 

can mediate the cleavage and activation of BID, a pro-apoptotic mitochondrial BCL2 family 

protein, which triggers the release of mitochondrial proteins and the activation of intrinsic 

apoptosis [18, 19]. 

 

1.2.2. Role of caspases in apoptosis and their regulation 

Cysteine aspartate-directed proteases (caspases), a conserved family of enzymes, are 

central to the process of apoptosis [30, 31]. Typically, activation of caspases is a regulated 

process and can be divided into two classes – initiator or apical caspases (caspase-8 and -10) and 

effector or executioner caspases (caspase-3 and -6). Initiator caspases are activated by 

recruitment to the adaptor proteins and death receptor-ligand complex at the cell surface. Initiator 

caspases, in turn, activate effector caspases, which work to cleave cellular proteins [31, 32]. All 

eukaryotic caspases are produced as inactive zymogens and have to undergo proteolytic cleavage 
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during apoptosis [31]. Caspase activation is tightly regulated at different levels in order to illicit a 

fine-tuned response to a death signal and to avoid inadvertent cell death. First, caspases are 

subject to transcription regulation and post-translational modifications. For instance, mRNA 

levels of caspase-2 are regulated in a p53/p21-dependent manner and are upregulated only in the 

case of DNA damage [33]. Similarly, previous studies have shown that caspase-8 is 

phosphorylated by a number of serine/threonine and tyrosine kinases (including Cyclin B/Cdk1 

and p38 MAPK) that have been linked with the inhibition of caspase-8 cleavage and activation 

[33, 34]. Second, caspase activation, especially in the extrinsic pathway, strictly requires the 

recruitment of procaspases to active death signaling complexes at the cell surface (e.g., 

procaspase-8 recruitment by adaptor proteins bound to TNF/TNFR1 death signaling complex) 

[34, 35]. Third, caspase activation is finely regulated through a cascade of initiator and effector 

caspases to prevent inadvertent apoptosis [30, 33]. Fourth, cell survival and apoptosis are 

regulated by several intermediary proteins, such as c-FLIP that compete with procaspases for 

binding to death inducing silencing complex (DISC), thereby preventing caspase activation and 

apoptosis [33, 35]. Lastly, the conserved inhibitor of apoptosis (IAP) family of proteins can 

potently inhibit the activity of caspases and can degrade them through ubiquitination-mediated 

proteasome pathway [36-38]. 
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Figure 1.1. Schematic of extrinsic and intrinsic apoptosis. 

Extrinsic apoptosis is induced by coupling of death receptors with their ligands at the cell 

surface. The signal is then transduced to the inside of the cell via several adaptor proteins that are 

recruited by the death receptors. This initiates recruitment and activation of caspase-8 (an 

initiator caspase), which leads to the activation of caspase-3 (an effector caspase). The activation 

of caspases is repressed by anti-apoptotic proteins, such as IAPs and FLIP (shown as rectangles). 

On the other hand, intrinsic apoptosis initiates with activation of pro-apoptotic Bcl family of 

proteins (e.g., BID), releasing cytochrome c and activating caspase-9. Similar to anti-apoptotic 

signaling in extrinsic apoptosis, caspase-9 activation can be repressed by XIAP. There is 

crosstalk between extrinsic and intrinsic apoptotic pathways as indicated.  
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1.2.3. Apoptosis and colorectal cancer 

Dysregulation of apoptosis leads to a variety of human diseases, such as autoimmune 

diseases, neurodegenerative disorders, and is a hallmark of cancer [19, 39]. While apoptosis is 

essential to homeostasis of the colonic epithelium, abnormalities in apoptotic response can 

contribute to the pathogenesis of colorectal cancer and resistance to chemotherapeutic agents and 

radiation therapy [27]. Thus, there is great interest in understanding how colorectal cancer cells 

evade apoptosis and transition to a more uncontrolled proliferation. Since apoptosis is an 

important mechanism of tumor suppression, there are strong selective pressures to disable 

apoptosis in cancer cells, with most of the mutations targeting pathways leading into apoptosis, 

rather than the apoptotic machinery itself. There are two general mechanisms by which apoptosis 

is suppressed in colon cancers: (1) through the mutation of genes that mediate apoptotic 

signaling and apoptosis, and (2) through the establishment of a micro-environment that 

stimulates survival pathways.  

Colon cancers harbor mutations that suppress apoptotic signaling or apoptotic execution. 

Most common of these are mutations of p53 tumor suppressor gene, TGFβ, PTEN, caspase-8, 

and SMAD4 [40-45]. For instance, p53 is found to be mutated in about 60 percent of colorectal 

cancers and about 15 percent of the colorectal cancers harbor caspase-8 mutations [40]. 

Mutations of p53, SMAD4, and PTEN suppress apoptotic signaling [46], mutations in TGFβ1 

promote proliferation and survival [42, 47], and mutations in caspase-8 inactivate the apoptotic 

machinery [43]. In addition, activating mutations of receptor tyrosine kinase (RTK) as well as 

oncogenes in the MEK/ERK pathway (Kras and Braf) signal for cell survival and proliferation 

[48-50]. In addition to genetic mutations, colon cancer cells also take advantage of the 

inflammatory cytokines in their microenvironment by upregulating pro-survival and proliferation 
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signaling, while suppressing apoptosis [51, 52]. For example, coupling of TNF to TNFR1 can 

mediate NF-κB activation, which targets the transcription of genes involved in cell survival and 

proliferation [53]. However, as previously noted, TNF/TNFR1 coupling can also result in 

caspase-8 activation [34, 54]; cancer cells circumvent this by increasing the cell surface 

expression of TNFR2, which exclusively signals for NF-κB activation [55, 56] (Figure 1.2). 

Thus, cancer cells suppress apoptotic signaling through genetic mutations and by using their 

micro-environment for enhanced survival signaling. 

In summary, induction of apoptosis is one of the major mechanisms of tumor suppression 

and elimination of mutated cells. However, cancer cells develop various mechanisms to evade 

apoptosis. Moreover, cancer cells upregulate survival pathways to increase the likelihood of their 

survival and proliferation. Understanding genetic alterations and molecular events that help 

tumor cells evade apoptosis would establish a paradigm to explain the association between 

alterations in cancer cells, drug resistance, and evasion of apoptosis. Understanding these 

associations may aid in the development of novel, targeted therapies that can activate apoptotic 

signaling in cancer cells and may ultimately help in cancer treatment and prevention. 
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Figure 1.2. Schematic of TNFR1-mediated death and survival signaling. 

TNFR1-TNF coupling can mediate extrinsic apoptotic response as well as survival signaling 

through NF-κB activation. Activation of the NF-κB transcription factor results in the 

transcription of survival genes. Activation of survival signaling, in turn, suppresses cellular 

apoptotic signaling. Conversely, activation of apoptosis suppresses cell survival signaling. On 

the other hand, TNFR2-TNF coupling exclusively signals for cell survival via NF-κB activation, 

leading to enhanced cell survival and suppressed apoptosis. 
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CHAPTER 2 

Identification of novel compounds that enhance colon cancer cell sensitivity to 

inflammatory apoptotic ligands 

 

2.1. Abstract 

Immune and inflammatory death ligands expressed within neoplastic tissue could 

potentially target apoptosis to transformed cells. To develop approaches that accentuate the anti-

cancer potential of the inflammatory response, the ChemBridge DIVERSetTM library was 

screened for compounds that accentuated apoptosis in a strictly TNF-dependent manner. We 

identified a number of novel compounds with this activity, the most active of these, AK3 and 

AK10, sensitized colon cancer cells to TNF at 0.5 μM and 2 μM, respectively, without inducing 

apoptosis on their own. The activity of these compounds was structure-dependent and general, as 

they accentuated cell death by TNF or Fas ligation in multiple colon cancer cell lines. Both AK3 

and AK10 arrested cells in mitosis, with live cell imaging indicating that mitotically arrested 

cells were the source of apoptotic bodies. AK3 accentuated caspase-8 and caspase-9 activation 

with little effect on NF-κB target gene activation. Enhanced caspase activation corresponded to 

an increased expression of TNFR1 on the cell surface. To determine the general interplay 

between mitotic arrest and TNF sensitivity, aurora kinase (MLN8054 and MLN8237) and PLK1 

(BI2536) inhibitors were tested for their ability to sensitize cells to TNF. PLK1 inhibition was 

particularly effective and influenced TNFR1 surface presentation and caspase cleavage like 

AK3, even though it arrested mitosis at an earlier stage. We propose that AK3 and AK10 

represent a new class of mitotic inhibitor and that selected mitotic inhibitors may be useful for 

treating colon cancers or earlier lesions that have a high level of inflammatory cell infiltrate. 
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2.2. Introduction 

Inflammation can play a central role in cancer promotion in many tissues, one of the best 

documented being the colon. Extensive ulcerative colitis (UC) has been associated with a 

significant increase in colon cancer development, and managing inflammation with 5-ASA 

decreases this risk [57, 58]. Inflammation may also contribute to the development of sporadic 

colon cancer; nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin and ibuprofen can 

decrease cancer risk in the population at large by close to 50% [59-61]. The interaction between 

inflammatory signaling and cancer may continue through late stages of the disease, as most 

cancers maintain elevated levels of TNF, IL6 and other inflammatory mediators [51, 62-65]. The 

role of inflammation in colon cancer development is multifaceted and includes the increased 

generation of DNA-reactive molecules, enhanced angiogenesis and activation of the anti-

apoptotic transcription factor NF-κB [63, 65-69]. 

Although inflammation is associated with cancer development, immune and 

inflammatory cells produce a range of molecules with potent death-inducing capabilities that 

have the potential to limit lesion growth. Evidence suggests that early tissue lesions are kept at 

bay by the immune response [70, 71]. Cancers are in fact found to be “immune-edited,” 

consistent with the active elimination of immunogenic cells from the developing lesion [72, 73]. 

In this regard, the adaptive immune response is likely to be anti-tumorigenic. The contribution of 

innate immunity to cancer development is less clear. Generalized inflammation has been 

implicated in cancer promotion [74]. However, the influence of innate immune cells on cancer 

development may be stage-specific. In the case of advanced colon cancer, macrophage density at 

the tumor margin is strongly associated with a better patient outcome, which may result from 

their ability to generate apoptosis-inducing factors [75]. 
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The death-inducing capabilities of immune cells serves as the basis for cancer therapies 

utilizing vaccines or immune stimulants. For example, the inclusion of Aldesleukin and 

granulocyte- macrophage colony-stimulating factor (GM-CSF) with traditional chemotherapeutic 

agents has been shown to improve the outcome of colon cancer patients [76, 77]. Evidence 

suggests that immune stimulants activate both the innate and adaptive arms of the immune 

response to induce lesion regression [78-80]. The anticancer activities of the immune response 

can be counteracted by a range of phenotypic changes in cancer cells. The cell killing actions of 

the adaptive immune response can be mitigated by the decreased expression of MHC molecules 

on cancer cells [81-83]. A more general resistance to immune cell killing may also be achieved 

by the increased expression of anti-apoptotic proteins, such as survivin and other IAPs, by cancer 

cells [84, 85]. To obtain insight into cellular pathways that are associated with an increased 

resistance to immune cells, we screened a compound library for agents that sensitize colon 

cancer cells to TNF induced apoptosis, without affecting cell viability on their own. 

The majority of compounds obtained through this screen worked through a mitotic arrest 

mechanism. We propose that agents that target mitosis may be well-suited for enhancing the 

anticancer actions of the immune and inflammatory response. We also discuss the possibility that 

the mitotic proteins that are frequently upregulated in colon cancers serve (in part) to ensure that 

cancer cells proceed efficiently through mitosis so that they evade elimination by apoptotic 

ligands. 
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2.3. Materials and Methods 

2.3.1. Cell culture 

HT29 and HCT 116 colon cancer cell line were obtained from the American Type 

Culture Collection. These cell lines were cultured in McCoy’s 5A medium with 10% fetal bovine 

serum, non-essential amino acids and antibiotic/antimycotic (Life Technologies). The AJ02-NM0 

cell line was isolated from an AOM-induced tumor from the A/J mouse strain and were cultured 

in RPMI 1640 with Glutamax (Life Technologies) supplemented with 5% (v/v) fetal bovine 

serum (Lonza), 5% (v/v) heat-inactivated horse serum, 1% (v/v) insulin-transferrin-selenium 

(Gibco), 100 mM non-essential amino acids (Invitrogen) and antibioticantimycotic (Life 

Technologies) [86]. The compounds tested were obtained from the ChemBridge DIVERSetTM 

library. BI2536, MLN8054 and MLN8237 were obtained from Selleck Chemicals. Drug 

treatments were performed approximately 24 h after passage for 18 h, unless otherwise indicated. 

TNF was obtained from Pierce Protein Research Productsand the activating Fas antibody (clone 

CH11) was purchased from Millipore. 

 

2.3.2. Caspase-3 activity 

Caspase activity was determined as previously described [87]. Briefly, cells were scraped 

off into a new tube, centrifuged at full speed in a microcentrifuge at 10,000 × g for 5 min and 

washed once with PBS. Pelleted cells were lysed by two rounds of freeze-thaw in lysis buffer 

containing 10 mM TRISHCl (pH 7.5), 0.1 M NaCl, 1 mM EDTA and 0.01% Triton X-100 and 

centrifuged at 10,000 × g for 5 min. The assays were performed on 96-well plates by mixing 50 

ml of cell lysis supernatant with 50 ml of 2× reaction mix [10 mM PIPES (pH 7.4), 2 mM 

EDTA, 0.1% CHAPS, 10 mM DTT] containing 200 nM of the fluorogenic substrate Acetyl-Asp-
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Glu-Val-Asp-7-Amino-4-methylcoumarin (DEVD-AMC; Enzo Life Sciences). The fluorescence 

was quantified using a microplate reader (excitation/ emission 360/460 nm) at the start of the 

reaction and after 30 min. Protein concentrations were determined using CBQCA Protein 

Quantification Kit (Life Technologies). Caspase activity was determined by dividing the change 

in fluorescence after 1 h by the total protein content of the reaction mixture. 

 

2.3.3. Immunoflurorescence microscopy. 

Treated cells cultured on coverslips were fixed with 4% paraformaldehyde or methanol 

and then permeabilized with 0.5% Triton X-100 in PBS. Cells were blocked in 5% serum (in 

PBS) and then incubated for 1 h at room temperature on the shaker with the primary antibody (in 

5% serum) against cleaved caspase-3 (9961, Cell Signaling Technology), phospho-histone H3 

Ser 28 (sc-12927, Santa Cruz Biotechnology) or β-tubulin (E7 monoclonal antibody, 

Developmental Studies Hybridoma Bank). TNFR1 antibody (H-5, Santa Cruz Biotechnology) 

incubation was performed overnight at 4°C. Appropriate secondary antibodies (Jackson 

ImmunoResearch) were used for 45 min incubation. Nuclei were visualized using DAPI (5 

mg/ml in H2O) (D1306, Life Technologies). Coverslips were mounted on slides using ProLong® 

Gold AntiFade Reagent (Life Technologies). Images were acquired using Nikon A1R Confocal 

Microscope (v. 2.11) and NIS-Elements Advanced Research Software (version 3.2). 

Quantification of immunostaining was performed using ImageJ image analysis software 

(http://rsb.info.nih.gov/ij/) as previously described [88]. Following background subtraction, both 

DAPI and immunofluorescent images were converted to binary using the convert to mask 

function. To remove any false positive signal, a binary image of the colocalized points was 

generated using the colocalization plugin of Bourdoncle 
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(http://rsbweb.nih.gov/ij/plugins/colocalization.html). The integrated densities of the total area of 

the colocalized binary image and the corresponding DAPI image were then measured to generate 

staining index. 

 

2.3.4. Time lapse imaging 

HT29 cells stably expressing histone H2B-GFP were used for live cell imaging. Images 

were taken with Nikon A1R Confocal Microscope every 16 min as Z-stacks of 30 images, each 1 

μm apart. Images were restacked using Fiji/ ImageJ (National Institute of Health). 

 

2.3.5. Cell cycle analysis 

HT29 and HCT116 cells were analyzed for DNA content by ethanol fixation and staining 

with propidium iodide as previously described [89]. Floating and adherent cells were combined 

and analyzed by flow cytometry. Adherent cells were harvested using a trypsin-EDTA solution, 

centrifuged together with the floating cells at 100 × g for 5 min and resuspended in 1 ml of cold 

saline GM. Cells were then fixed by adding 3 ml of cold 100% ethanol while gently vortexing 

and stored at -20°C for at least 2 h. Cells were then pelleted and washed once with PBS 

containing 5 mM EDTA. Pelleted cells were stained with 30 μg/ml propidium iodide (Sigma-

Aldrich) and 0.3 mg/ml RNase A in 1 ml PBS solution for 1 h in the dark at RT. The stained 

cells were filtered prior to analysis on FACSCalibur flow cytometer (BD Biosciences) using Cell 

Quest software (BD Biosciences). The data were analyzed using FlowJo (TreeStar Inc.). 
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2.3.6. Western blot 

RIPA buffer was employed for protein extraction and 30 μg of protein was denatured 

under reducing conditions [90, 91]. Proteins were separated on 4–20% gradient gels (Bio-Rad) 

and transferred to nitrocellulose by voltage gradient transfer. The resulting blots were blocked 

with 5% (w/v) non-fat dry milk in PBS + 0.1% (v/v) Tween-20. Specific proteins were detected 

with appropriate antibodies using enhanced chemiluminescence detection (Santa Cruz 

Biotechnology) as recommended by the manufacturer. Immunoblotting antibodies were survivin 

(71G4B7, Cell Signaling Technology), phospho-survivin (Thr34) (D2E11, Cell Signaling 

Technology), cleaved caspase-8 (18C8, Cell Signaling), caspase-9 (human specific, Cell 

Signaling), pro-caspase-8 (8CASP03, Santa Cruz Biotechnology), TNFR1 (H-5, Santa Cruz 

Biotechnology) and β-actin antibody (I-19, Santa Cruz Biotechnology). 

 

2.3.7. RNA quantification 

Total RNA extraction was performed using Trizol reagent (Life Technologies) following 

the manufacture’s instruction. RNA was quantified by reverse transcription and quantitative PCR 

analysis using Taqman reagents (Life Technologies), as previously described [90]. 

 

2.3.8. Compound synthesis 

Starting from commercially available tert-Butyl piperazine-1-carboxylate, a Buchwald 

coupling (palladium cross coupling reaction between an amine and an aryl halide) was 

performed to append the dimethylbenzene ring to the free amine. Deprotection of the carbamate 

was achieved using 20% HCl in methanol. Subsequent amidation using trimethylamine and 
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various acyl chlorides yielded the final compounds that were tested after purification by column 

chromatography and structure validation using proton and carbon NMR. 

 

2.3.9. Statistical analyses 

All results are reported in triplicates as mean ± standard error of mean, unless specified 

otherwise. One-way analysis of variance (ANOVA) was used when comparing two groups with 

Tukey’s post hoc test. For more than two groups, two-way ANOVA was used with Bonferroni 

correction. Significance was calculated at an alpha of 0.05. 

 

2.4. Results 

2.4.1. Compound screen for the induction of TNF sensitivity 

Four hundred compounds from the ChemBridge DIVERSetTM library were assessed for 

their ability to increase the sensitivity of the HT29 colon cancer cell line to TNF-induced 

apoptosis (Figure 2.1A). For this screen, duplicate 96-well plates were generated and treated in 

parallel with 40–50 μM of compound with one of the plates containing 50 ng/ml TNF. After 18 

h, the plates were visually inspected for cell death and cellular extracts were prepared for an 

enzymatic caspase-3 assay (using the DEVD-AMC fluorogenic substrate). From this initial 

screen, six compounds were selected for further analysis, based on the level of caspase activation 

in the presence of TNF. These compounds were retested on HT29 cells, with active caspase-3 

staining employed as a test of apoptosis. Quantification of this staining showed that the six 

compounds identified in the primary screen increased active capsase-3 in HT29 cells in a strictly 

TNF-dependent manner (Figure 2.1B). The structures of these compounds are shown in Figure 

A1. 
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Two of the most active compounds from the screen, AK3 and AK10, were taken for 

further analysis. Figure 2.2A shows their chemical structure; both have a central piperazine 

group with a phenyl and a benzoyl group attached to the two piperizane nitrogens. HT29 cells 

treated with TNF in combination with AK3 or AK10 showed an increase in the proportion of 

cells expressing active caspase-3, with positively staining cells frequently showing an apoptotic 

morphology (Figure 2.2B). A titration of the compounds for activation of caspase-3 (DEVDase) 

in the presence and absence of TNF is shown in Figure 2.2C. Neither AK3 nor AK10 

significantly induced caspase-3 activity on their own, but did so when TNF was present. The 

level of agent required to stimulate apoptosis when TNF was present was in the low micromolar 

range for both AK3 and AK10, with an LD50 of 0.5 μM for AK3 and 2 μM for AK10. 

Since both AK3 and AK10 compounds have a similar chemical structure, we generated a 

number of related compounds to determine whether their TNF sensitizing activity was dependent 

on their structure or whether it was a property inherent to the central piperazine group. The 

compounds synthesized are shown in Figure A2A. Application of these compounds to HT29 

cells in the presence or absence of TNF showed that AK24 had a significantly higher TNF 

sensitizing activity than the other derivatives (Figure A2B). AK24 was, however, significantly 

less potent than AK3, as shown in Figure A2C. These structure-activity studies indicate that the 

activity of the piperazine-based compounds AK3 and AK10 result from specific structural 

elements that most likely function by binding to specific target molecules in the cell. 
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Figure 2.1. Identification of compounds that induce caspase-3 activation in a TNF-

dependent manner. 

(A) Schematic of the strategy employed for screening compounds from ChemBridge 

DIVERSetTM library. HT29 colon cancer cells were treated with 5 µM of test compounds for 18 

h in the presence or absence of TNF (50 ng/ml). Cell lysates were prepared and tested for 

caspase-3 activity using the DEVD-AMC fluorogenic substrate. (B) The compound screen 

identified six compounds that induced caspase-3 activation only in the presence of TNF using a 

DEVDase assay. As a secondary screen, compounds were tested by immunostaining cells using 

an antibody specific for cleaved caspase-3. Images were captured and the fraction of cells 

staining positive for caspase-3 were quantified. AK3 and AK10, two of the most active 

compounds, were selected for further investigation (*P < 0.0001). 
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Figure 2.2. Similarity in structure and TNF-dependent caspase-3 activation between AK3 

and AK10. 

(A) Similar chemical structure of AK3 and AK10. AK3 and AK10 both have a core piperazine 

group substituted with phenyl and benzoyl groups at the two piperazine nitrogens. (B) Increased 

caspase-3 and apoptosis in the combination treatment of AK3 or AK10 with TNF. HT29 cells 

were treated with AK3 or AK10 in the presence or absence of TNF for 18 h. Cells were fixed, 

permeabilized, and stained for active caspase-3. Higher proportion of cells stained for active 

caspase-3 in the combination treatment compared to control or AK3/AK10 treated cells. 

Positively staining cells displayed an apoptotic morphology. Bar, 100 µm. (C) Representative 

dose-response curves of caspase-3 activity with increasing concentrations of AK3 or AK10, in 

the presence or absence of TNF over 18 h.  Significant caspase activation was observed only in 

the combination treatment. The asterisks indicated points where the combination treatment was 

significantly higher than compound or TNF treatment alone (*P < 0.01). LD50s of AK3 and 

AK10 in the presence of TNF were determined to be 0.5 µM and 2.0 µM, respectively. 
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2.4.2. Generality of AK3 and AK10 activity 

To determine the generality of apoptotic sensitization by AK3 and AK10, these 

compounds were tested on the HCT116 colon cancer cell line (Figure 2.3A). HCT116 cells are 

more sensitive to TNF induced apoptosis than HT29 cells (which possibly results from their 

wild-type p53 status). However, AK3 was capable of further enhancing TNF induced caspase 

activation in these cells, whereas AK10 was not. AK3 and AK10 were also tested on a mouse 

colon cancer cell line, AJ02-NM0 cells (a p53-normal cell line derived from an AOM-induced 

colon tumor) [92]. TNF induced caspase-3 activation was stimulated in these cells by both AK3 

and AK10, with AK3 being more potent (Figure 2.3B). Finally, we determined whether AK3 and 

AK10 could stimulate caspase-3 activity induced by the Fas pathway. As shown in Figure 2.3C, 

both AK3 and AK10 stimulated Fas-induced caspase activation, without significantly inducing 

caspase activity on their own. From these data, we conclude that both AK3 and AK10 are 

broadly active on different cell lines and with different death ligands, with AK3 being more 

general in its activity. 
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Figure 2.3. Effect of AK3 and AK10 on other colon cancer cell lines and on Fas-mediated 

cell death. 

(A) TNF was titrated on to HCT116 cells in the presence or absence of 20 µM AK3 or AK10 for 

18 h.  Although these cells are more inherently sensitive to TNF, AK3 significantly increased 

caspase activity as measured by DEVD-AMC cleavage (*P < 0.01). AK10 did not significantly 

increase caspase activation in this cell line. (B) The mouse colon cancer cell line AJ02-NM0 cells 

was treated with AK3 or AK10 and in the presence or absence of murine TNF for 18 h and 

analyzed for caspase activity. Both AK3 and AK10 increased caspase activity in the presence of 
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TNF, but not in its absence (*P < 0.001). AK3 was significantly more effective than AK10 (*P < 

0.001). (C) AK3 and AK10 accentuated caspase activation by Fas ligation of HT29 cells. Cells 

were treated with AK3 or AK10 alone or in combination with an anti-Fas antibody (10 µg/ml) 

for 18 h and analyzed for caspase activation. Although HT29 cells are sensitive to Fas ligation, 

both AK3 and AK10 significantly enhanced caspase activation (*P < 0.001). 
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2.4.3. Mitotic arrest and TNF sensitivity 

A flow cytometric analysis of propidium iodide (PI)-stained cells was performed to 

assess the impact of AK3 and AK10 on the generation of subdiploid cells. Co-treatment of HT29 

cells with either compound in combination with TNF increased the sub-diploid population 

approximately 10-fold (Figure 2.4, right column). Treatment with AK3 or AK10 alone increased 

the fraction of cells in G2/M phase to approximately 70% (Figure 2.4). Interestingly, TNF 

caused a drop in the G2/M population that corresponded with the increased appearance of sub-

diploid cells, suggesting that the G2/M cells were the cells targeted for apoptosis. 

To determine if AK3 and AK10 induced a G2 or M phase arrest, immunofluorescent 

staining for the mitosis marker phospho-histone H3 Ser28 was performed [93, 94]. As shown in 

Figure 2.5A, both compounds induced a high level of phospho-histone H3 staining, consistent 

with a mitotic arrest (Figure 2.5A). Confocal analysis of the arrested cells showed similar mitotic 

structures induced by the compounds: in both cases, chromatin was condensed, but there was no 

congression of the chromosomes on the metaphase plate (Figure 2.5B). In addition, there were 

indications of mitotic spindle assembly, with apparent multiple microtubule organizing centers 

(Figure 5B). Other compounds identified in the screen likewise generated a mitotic arrest, as 

determined by enhanced histone H3 phosphorylation (Figure 2.5C). The induction of a mitotic 

arrest therefore appears to be a common mechanism for TNF sensitization. 
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Figure 2.4. AK3 and AK10 induce a G2/M arrest on their own and sub-diploid cell 

fragments in the presence of TNF. 

HT29 cells treated with AK3 or AK10 in the presence or absence of TNF for 18 h were analyzed 

for DNA content by propidium iodide staining. Flow cytometric analysis of AK3 and AK10 

treated cells showed a shift from G1 to G2/M. In the presence of TNF alone, little change in the 

flow cytometer pattern is observed. Combining TNF with AK3 and AK10 showed a decrease in 

the G2/M peak and the appearance of a sub-diploid population. 
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Figure 2.5. AK3 and AK10 induce prophase arrest with the appearance of multiple 

microtubule organizing centers (MTOCs). 

(A) HT29 cells treated with AK3 and AK10 for 18 h were fixed and stained for phospho-histone 

H3 Serine 28, a marker for chromatin condensation during mitosis. Cells were stained and 
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examined at 20X magnification by epi-fluorescence. (B) AK3 and AK10 arrest cells in prophase 

with multiple MTOCs. AK3- and AK10-treated cells were dual stained for phospho-histone H3 

(green) and β-tubulin (red) to visualize spindle assembly in arrested cells. Confocal imaging 

shows prophase arrested cells with spindles arising from multiple poles. Insets show magnified 

views of the mitotic cells. (C) Many compounds identified in the screen induce mitotic arrest. 

HT29 cells were treated with the indicated compounds at 25 µM and stained for phospho-histone 

H3. Images were captured and the mitotic index was quantified as a ratio of number of cell 

staining positive for histone H3 phosphorylation divided by the total number of cells visualized 

by DAPI staining (*P < 0.0001).  
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The flow cytometer data suggested that the sub-diploid cells in the co-treated cultures 

were derived from the arrested M phase population. To address this issue further, time-lapse 

imaging was performed on HT29 cells expressing a histone H2B-GFP fusion protein. As shown 

in Figure 2.6, cells treated with AK3 arrested in mitosis as indicated by the condensation of 

histone H2B-GFP fluorescence. Moreover, cells displaying condensed chromatin ultimately 

underwent apoptosis when TNF was present, further supporting the sensitivity of mitotically 

arrested cells. 

 

2.4.4. Effect of AK3 on TNF signaling 

Increased sensitivity to TNF-induced apoptosis could arise from an increased signaling 

through the proximal initiator caspase-8, through the suppression of the anti-apoptotic NF-κB 

signaling pathways or through a combination of these effects [95-97]. To assess the potential 

contribution of these pathways to sensitization, we determined the effect of AK3 on TNF-

induced gene activation and caspase-8 and -9 cleavage. As shown in Figure 2.7A, gene 

activation by TNF was largely unaffected by AK3, whereas the activation of the initiator 

caspase-8 and caspase-9 was increased (Figure 2.7B). Cleavage of pro-caspase-8 showed the 

largest fold change; its cleavage was undetectable in cells treated with TNF or AK3 alone, but 

nearly complete when cells were treated with TNF and AK3 for 6 hrs. 
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Figure 2.6. AK3-idnuced mitotically arrested cells undergo apoptosis. 

Time lapse imaging of histone H2B-GFP expressed in HT29 cells. Cells were treated with either 

AK3 (top panel) or AK3 plus TNF (bottom panel). Representative images show chromatin 

condensation in the cells treated with AK3 alone, whereas addition of TNF in combination with 

AK3 increased apoptosis of the mitotic cells. Arrows point to the cells undergoing mitosis (top 

panel and bottom panel, t = 3 h) and/or apoptosis (bottom panel, t = 7 h to t = 9 h). 
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Figure 2.7. Effect of AK3 on gene activation and initiator caspase cleavage by TNF. 

(A) HT29 cells were treated with AK3, TNF or AK3 plus TNF for 4 h. RNA was isolated, 

reverse transcribed, and quantified for expression of TNF, BIRC3, and p21 by real-time PCR. 

TNF activated the expression of the three genes tested relative to control cells (*P < 0.001), and 

there was no significant effect of AK3 on this activation. (B) AK3 enhances the TNF induced 

cleavage of caspase-8 and caspase-9. Cells were treated with TNF for 0, 2, 4, and 6 h in the 

presence and absence of AK3 and lysates were analyzed by immunoblotting with antibodies 
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against full length and cleaved caspase-8 and -9. (C) Protein samples were analyzed for TNFR1 

by immunoblotting. β-actin was used as the loading control.  
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A western blot analysis was performed to determine if AK3 altered the expression of the 

TNF receptor responsible for caspase-8 activation, TNFR1 [98, 99]. Increased caspase-8 

cleavage was not associated with an increased expression of total cellular TNFR1 as determined 

by western blot analysis (Figure 2.7C). In fact, a slight decrease in expression was observed in 

cells following treatment with AK3 or TNF. To determine whether TNFR1 cellular localization 

was altered by AK3, cells were examined by immunofluorescent staining. For this experiment, 

cells were either paraformaldehyde fixed and stained directly for TNFR1 or fixed and 

permeabilized with Triton X-100 prior to immunostaining. This analysis showed that while 

permeabilized cells stained uniformly for TNFR1 expression, non-permeabilized cells showed 

more variable expression (Figure 2.8A). We ascribe these changes in staining to changes in the 

cellular localization of TNFR1, with the staining of non-permeabilized showing receptors 

expressed at or close to the cell surface. A higher magnification view showed that cells in mitosis 

frequently displayed more intense staining than interphase cells under non-permeabilized 

staining conditions (Figure 2.8B). To determine the relative level of TNFR1 strictly on the cell 

surface, cells were transferred to ice and stained directly, without fixation or permeabilization 

(Figure 2.8C). This live cell staining protocol showed a higher level of TNFR1 staining on AK3-

treated cells, with the number of cells staining for TNFR1 increased by approximately five-fold 

(Figure 2.8D). The increased level of cell surface expression of TNFR1 may contribute to the 

observed increase in TNF induced caspase-8 activation. 

 

2.4.5. Mitosis targeting and TNF sensitivity 

A number of pharmacological agents have been developed that can arrest cells in mitosis. 

We tested a number of these agents for their ability to enhance TNF induced caspase activation 
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and apoptosis. As shown in Figure 2.9A, two aurora A kinase inhibitors (MLN8054 and 

MLN8237) and a PLK1 inhibitor (BI2536) were all able to stimulate caspase activation by TNF 

[100-104]. Of these three agents, BI2536 was the most potent for facilitating caspase activation, 

even though they all induced mitotic arrest in approximately 70% of the cells. Cell cycle analysis 

of HT29 cells treated with BI2536 in the presence or absence of TNF showed that the BI2536 

induced a G2/M arrest in approximately 70% of the cells and that inclusion of TNF with BI2536 

increased the sub-diploid population while decreasing the fraction of cells in G2/M arrest (Figure 

2.9B). This result is consistent with apoptosis in the G2/M phase cells being the primary source 

of the sub-diploid cells. The AJ02-NM0 mouse colon cancer cell line was likewise sensitized to 

TNF by BI2536, but less so by the two aurora kinase inhibitors (Figure 2.9C). Figure 2.9D shows 

that BI2536 and AK3 induce a comparable level of TNF induced caspase activity in HT29 cells, 

making them roughly equivalent in effectiveness. These data indicate that mitotic arrest can 

sensitize cells to TNF, but the degree of sensitization can vary depending on the mechanism of 

arrest. 

A critical signaling event that occurs during mitosis linked apoptosis is the 

phosphorylation of the kinetochore-associated passenger protein survivin by Cdk1-Cyclin B 

[105]. Survivin phosphorylation at Thr34 promotes mitotic progression and suppresses apoptosis 

[105, 106]. As shown in Figure 2.10A, AK3 treatment increased survivin phosphorylation, 

indicating that the cells can proceed past Cdk1 activation in mitosis. Interestingly, cells treated 

with AK3 and TNF undergo apoptosis even in the face of increased survivin phosphorylation. 

Figure 10A shows that cells treated with BI2536 have a relatively low level of survivin 

phosphorylation, which is consistent with its activity as a Plk1 inhibitor, which is upstream of 

Cdk1-Cyclin B. This analysis is consistent with BI2536 and AK3 arresting mitosis through 
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distinct mechanisms, even though they can both increase sensitivity to TNF. Like AK3, BI2536 

enhances caspase-8 and caspase-9 cleavage (Figure 2.10B) without reducing the activation of 

TNF target genes (Figure 2.10C). Also like AK3, BI2536 increases the number of cells that 

express high levels of TNFR1 on their surface, suggesting a possible mechanism of action for 

cell sensitization with BI2536 (Figure 2.10D). 
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Figure 2.8. Mitotic cells have a higher expression of TNFR1. 

(A) HT29 cells were treated with AK3 for 16 h and then fixed with PFA. Fixed cells were either 

stained directly with a TNFR1 antibody or were stained following permeabilization with Triton 

X-100. (B) Higher magnification of TNFR1 staining of permeabilized and non-permeabilized 

AK301-treated HT29 cells. All cells show TNFR1 expression following permeabilization, but 

staining is more variable in the absence of Triton X-100 permeabilization (as indicated). Mitotic 
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cells with round morphology and condensed chromatin frequently show elevated TNFR1 

expression. (C) Live cells stained for surface expression of TNFR1. HT29 cells were transferred 

to ice and stained directly for TNFR1 expression. (D) Quantification of the live cells expressing 

TNFR1 on the surface. Images were captured and quantified for the number of cells staining with 

the TNFR1 antibody. Significantly more cells cell stained for surface expression of TNFR1 after 

AK3 treatment (*P < 0.01). 
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Figure 2.9. Effect of kinase inhibitors on TNF sensitivity of colon cancer cells. 

(A) TNF induced caspase-3 activation in the presence of MLN8054, MLN8237 (aurora kinase A 

inhibitors) and BI2536 (PLK1 inhibitor). HT29 cells were treated with the indicated 

concentrations of the inhibitors in the presence or absence of TNF for 18 h and tested for 

caspase-3 activity using DEVD-AMC substrate. BI2536 induced significantly higher level of 

caspase activation than the aurora kinase A inhibitors (*P < 0.01). (B) Cell cycle analysis of 

HT29 cells treated with BI2536 in the presence or absence of TNF. BI2536 at 100 nM induces a 

G2/M arrest, and in combination with TNF, causes the appearance of sub-diploid population. (C) 
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BI2536 enhances TNF induced apoptosis in the mouse AJ02-NM0 colon cancer cell line more 

potently than MLN8054 or MLN8237. AJ02-NM0 cells were treated with the inhibitors in the 

presence or absence of murine TNF for 18 h and tested for caspase activation using the DEVD-

AMC substrate. Inhibitors were used at 0, 125, 250, 500, and 1000 nM (from left to right). 

BI2536 was a significantly more potent sensitizing agent than aurora kinase A inhibitors at all 

concentrations tested (*P < 0.05, **P < 0.01). (D) AK3 and BI2536 induce comparable levels of 

caspase activation in HT29 cells in the presence of TNF. Cells were treated with the indicated 

agents and tested for caspase activation using DEVD-AMC substrate. AK3 and BI2536 in 

combination with TNF induced significantly higher caspase activity than either individual 

treatment (*P < 0.01). 
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Figure 2.10. AK3 enhances caspase-8 and -9 activation without reducing the activation of 

surviving or TNF-targeted genes. 

(A) Influence of AK3 and BI2536 on mitosis-dependent surviving phosphorylation. HT29 cells 

were treated with AK3 or BI2536 in the presence or absence of TNF for 18 h, as indicated. 
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Lysates were analyzed by immunoblotting with antibodies against total surviving and surviving 

phosphorylated at Thr34. β-actin was run as the loading control. (B) Effect of BI2536 on initiator 

caspase cleavage. HT29 cells were treated with TNF for the indicated times in the presence or 

absence of BI2536. Cell lysates were prepared and analyzed caspase-8 and caspase-9 cleavage. 

(C) Effect of BI2536 on gene activation by TNF> HT29 cells were treated with the TNF in the 

presence or absence of BI2536 as indicated. RNA was extracted at 4 h and quantified for 

expression of TNF, BIRC3, and p21 mRNA by reverse transcription/ real-time PCR assay using 

actin as an internal control. The expression levels shown are relative to the untreated control 

cells. TNF activated the expression of the three genes tested relative to control cells (*P < 0.001), 

but there was no significant effect of BI2536 on this activation. (D) Quantification of the live 

cells expressing TNFR1 on the surface. Images were captured and quantified for the number of 

cells staining with the TNFR1 antibody. Significantly more cells stained for surface expression 

of TNFR1 after BI2536 treatment (*P < 0.0.1).  
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2.5. Discussion 

Colon cancers arise in an inflammatory microenvironment and continue to accommodate 

elevated levels of infiltrating immune cells as they progress. Although the suppression of 

inflammation over the long-term is a sensible approach to colon cancer prevention, a 

complementary approach would be to take advantage of the pro-apoptotic signals associated with 

an inflammatory response to target transformed cells for apoptosis. A number of natural and 

pharmacological agents, including NSAIDs, appear to have this ability and have been reported to 

increase cancer cell sensitivity to TNF, TRAIL or Fas ligand, although it is not clear how this 

activity functions in cancer prevention [87, 91, 107-109]. We and others have reported that 

HDAC inhibition is particularly effective at increasing colon cancer cell sensitivity to TNF, Fas 

and TRAIL [87, 110]. This sensitizing activity may account for the reported ability of 

SAHA/Vorinostat to selectively enhance apoptosis in AOM-induced colon tumors and suppress 

their formation and growth [87, 111-113]. It is not clear, however, whether HDAC inhibitors are 

ideal for this purpose since they also cause changes in histone acetylation and gene expression 

systemically. 

To better understand the mechanisms by which cancer cells can be sensitized to the 

inflammatory milieu of a lesion, we screened for compounds that increase TNF induced 

apoptosis of colon cancer cells. Of the 400 compounds screened, 2 of the agents identified AK3 

and AK10, had good potency and were structurally related. Interestingly, these and a number of 

other compounds identified in the apoptosis screen also induced mitotic arrest, with evidence 

pointing to a higher apoptotic rate of mitotically arrested cells. A number of pharmacological 

agents that target mitosis were also found to increase cancer cell sensitivity to TNF, but with 

varying efficacy. For instance, a Plk1 inhibitor (BI2536) was found to function better than two 
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aurora kinase A inhibitors (MLN8054 and MLN8237) at sensitizing cancer cells to TNF induced 

apoptosis, even though they all enforced comparable degrees of mitotic arrest. Compounds 

identified in the library screen likewise showed variations in their ability to induce mitotic arrest 

and sensitize cells to TNF. For example, AK16 was the most potent mitotic arrest agent but not 

the best sensitizing agent. The reason for this variation in efficiency is not clear. Nonetheless, our 

data suggest that selected mitotic inhibitors may effectively target neoplastic lesions because of 

their elevated rate of cell division, their loss of mitotic checkpoints and because they sensitize 

cancer cells to their inflammatory micro-environment. Whether this approach would be feasible 

on its own for clearing lesions from the colonic mucosa will require further study. 

Mobilization of the immune response, whether through vaccination, immune stimulatory 

treatments or inflammatory agents, has long been envisioned as an ideal approach to selectively 

target cancer cells. Tumor cells have been documented to present epitopes that can be recognized 

as foreign by the immune response and that well-considered stimulants can direct immune cells 

to neoplastic lesions. Immune stimulants ideally increase the activity of cytotoxic T cells (CTLs), 

which function through either Fas ligation or release of perforin/granzyme. The Fas system 

becomes particularly important for targeting cancer cells with weak TCR-epitope complexes [72, 

73]. Since tumors are immune-edited for strongly immunogenic epitopes, enhancing Fas-

inducing cell death may be particularly beneficial [114]. We found that both AK3 and AK10 can 

enhance cell death mediated by Fas ligation, suggesting that these or similarly acting agents 

might increase the effectiveness of CTLs. The induction of a strong Th1 response by immune 

stimulants also increases the local concentration of a number of characteristic cytokines, 

including TNF. AK3, AK10 and similarly acting agents might, therefore, facilitate the TNF-

induced cell killing to eliminate cells in the lesion that escape direct CTL detection. 
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In addition to identifying potential drug targets, compound screens can also generate 

molecular probes useful for identifying and studying critical pathways in cancer progression. In 

this regard, the results of our compound screen indicate that mitotic regulators may play an 

important role in helping cancer cells resist death ligands within the inflammatory milieu of a 

neoplastic lesion. Colon cancer cells have long been noted for altered expression of proteins 

involved in mitosis. These proteins include components of the centromeres as well as kinases 

and ubiquitin ligases that regulate mitotic progression [115, 116]. Proteins in this latter group 

include Cyclin B, aurora kinases A and B and CHFR [117-121]. CHFR, which regulates entry of 

cells into prophase is frequently silenced by promoter methylation in colon cancer cells [118]. 

The altered expression of mitotic proteins in colon cancer cells likely contributes to their 

chromosomal instability. However, these changes are also observed in colon cancer cells with a 

mutator phenotype that are chromosomally stable. For example, CHFR silencing is frequently 

associated with MLH1 silencing and a mutator phenotype [122]. We propose that the altered 

expression of mitotic regulators may function in part to facilitate the survival of cells within an 

inflamed tissue environment. This alteration may occur early in cancer development—it has been 

reported that aurora kinase A and Bub1B are overexpressed in preneoplastic mucosa of 

ulcerative colitis patients [123]. Aberrant expression of proteins that promote mitosis may help 

ensure that cells do not arrest at prophase/prometaphase for a prolonged period of time when 

they may be more sensitive to ligand-induced apoptosis. 

The mechanism linking death ligand sensitization and mitosis is not well understood. We 

found that mitotic arrest by AK3 showed enhanced cleavage of the initiator caspase-8 and -9. 

The enhancement of caspase-8 cleavage was, however, more dramatic; little cleavage, if any, 

was observed when cells were treated singly with TNF or AK3, whereas the combination 
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treatment lead to a near complete cleavage. Since TNFR1 is responsible for directing casapse-8 

activation, its expression and cellular localization was analyzed. Although AK3 did not increase 

the overall expression of TNFR1, it did increase its appearance on the cell surface. These results 

suggest that AK3 works in part by increasing the level of TNFR1 on the cell surface, which 

would increase its ability to interact with TNF and form a death inducing complex (either on the 

cell surface or following endosome incorporation). Arresting cells in mitosis with BI2536, 

likewise, increased the expression of TNFR1 on the cell surface. It is somewhat counterintuitive 

that the increased surface expression of TNFR1 would induce caspase-8 cleavage, but not the 

activation of TNF/NF-κB target genes. Although there are a number of explanations for this 

observation, perhaps the most likely is that TNF also activates the expression of the NF-κB 

inhibitory proteins IκBα and p105, which establishes a negative feedback loop for TNF-induced 

gene activation [124]. In contrast, caspase-8 activation is characterized by positive feedback 

loops [125], such that repeated binding and stimulation of the receptor may lead to persistently 

increasing levels of caspase cleavage and death signaling. 

Cell surface expression of TNFR1 on cancer cells was found to be highly variable, even 

under normal growth conditions. The reason for this high level of variability is not known, but 

presumably involves alterations in receptor trafficking through different membrane 

compartments. Relative to interphase cells, mitotic cells displayed elevated levels of TNFR1 

surface expression, such that the overall frequency of surface expression was increased by AK3. 

We hypothesize that cells undergoing mitotic stress due to chromosome or spindle abnormalities 

display more TNFR1 on their surface to facilitate their elimination from the tissue. This may be 

an important checkpoint during cancer development. However, unlike other checkpoint 

pathways, such as those involving increased expression of p16INK4A or p14ARF, this pathway 
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requires that presence of an extracellular death ligand [126]. The role of TNFR1 is colon cancer 

development is consistent with the finding that TNFR1 null mice are more sensitive to tumor 

formation than wild type animals (in the AOM/DSS model) [127]. Although the apoptosis rate in 

normal tissue is not changed in TNFR1 null animals, TNFR1 may reduce cancer risk by inducing 

apoptosis of rare, genetically damaged cells. The extent to which TNFR1 signaling eliminates 

damaged and mitotically arrested cells from the tissue remains to be determined. An interesting 

parallel, however, appears to exist in Drosophila where TNF and TNF receptor homologs Eiger 

and Wegen, respectively, serve to remove damaged cells from developing epithelial tissues 

[128]. 

The two most active compounds identified in our screen contain a piperazine core 

substituted at the nitrogens with a benzoyl group and a phenyl ring. The activity of this structure 

depends on the specific substituents present on the benzoyl and the phenyl rings, and it is 

possible that further elaboration of these domains could lead to higher potency compounds. The 

general structure of AK3 and AK10 does not appear to resemble any present mitotic inhibitor, 

suggesting that they are a new type of mitotic arresting agent. Although these compounds arrest 

mitosis at some point after survivin phosphorylation (at the Cdk1-cyclin B target site), the 

precise nature of this inhibition is not yet known. In vitro tubulin polymerization assays indicate 

that they do not directly target tubulin (data not shown). Whether these agents or their targets 

might be useful for the development of new pharmacological agents is not clear. However, 

understanding their mechanism of action may provide new insight into colon cancer etiology and 

suggest novel approaches to colon cancer treatment and prevention. 
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CHAPTER 3 

Novel piperazine-based compounds inhibit microtubule dynamics and sensitize colon 

cancer cells to TNF-induced apoptosis 

 

3.1. Abstract 

We recently identified a series of mitotically acting piperazine-based compounds that 

potently increase the sensitivity of colon cancer cells to apoptotic ligands. Here we describe a 

structure-activity relationship study on this compound class and identify a highly active 

derivative 1-(3-chlorophenyl)-4-(2-ethoxybenzoyl)piperazine, referred to as AK301, the activity 

of which is governed by the positioning of functional groups on the phenyl and benzoyl rings. 

AK301 induced mitotic arrest in HT29 human colon cancer cells with an ED50 of ≈ 115 nM. 

Although AK301 inhibited growth of normal lung fibroblast cells, mitotic arrest was more 

pronounced in the colon cancer cells (50% vs. 10%). Cells arrested by AK301 showed the 

formation of multiple microtubule organizing centers with aurora kinase A and γ-tubulin. 

Employing in vitro and in vivo assays, tubulin polymerization was found to be slowed (but not 

abolished) by AK301. In silico molecular docking suggests that AK301 binds to the colchicine-

binding domain on β-tubulin, but in a novel orientation. Cells arrested by AK301 expressed 

elevated levels of TNFR1 on their surface and more readily activated caspases-8, -9, and -3 in 

the presence of TNF. Relative to other microtubule destabilizers, AK301 was the most active 

TNF sensitizing agent, and also stimulated Fas- and TRAIL-induced apoptosis. In summary, we 

report a new class of mitosis-targeting agents that effectively sensitizes cancer cells to apoptotic 

ligands. These compounds should help illuminate the role of microtubules in regulating apoptotic 
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ligand sensitivity and may ultimately be useful for developing agents that augment the anti-

cancer activities of the immune response. 

 

3.2. Introduction 

Eukaryotic cell division involves replication of DNA in S phase followed by equal 

segregation of mitotic chromosomes during anaphase [129]. Cell cycle checkpoints have evolved 

to ensure faithful DNA replication and chromosomal division. Cells that harbor defective cell 

cycle checkpoint regulators can result in genetic instability and aneuploidy, ultimately leading to 

tumor development [130]. Mitosis orchestrates multiple cellular changes and depends on many 

intricate signaling pathways, despite being the shortest phase of cell cycle [131]. Signaling 

pathways, including kinases and several checkpoint proteins, spacio-temporally regulate 

dynamic chromosomal rearrangements and reorganization. It is because of this intricacy that 

mitosis is considered the most sensitive phase of the cell cycle [132, 133]. Damage to cellular 

processes that affect mitosis can activate spindle assembly checkpoint (SAC), which delays 

progression into anaphase [134]. Prolonged arrest in mitosis makes the cells more sensitive to 

cellular insults, which has likely made mitosis a desirable target for chemotherapy [132, 135-

137]. Aneuploidies and other genomic and chromosomal abnormalities can induce cellular stress 

on cancer cells and make them highly sensitive to agents that disrupt mitosis [138]. 

Microtubules form spindle fibers during mitosis that are critical for chromosomal 

alignment and segregation [139, 140]. Previous findings suggest that agents that target the 

mitotic spindle can make highly effective chemotherapeutic drugs. Successful use of several 

vinca alkaloids, taxanes, and other natural compounds for the treatment of human cancers has 

validated the effectiveness of microtubule-targeting drugs [141-143]. Several other mitotic 
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proteins have also emerged as potential targets of chemotherapy. These targets include kinases, 

motor proteins, proteasome inhibitors and inhibitors of chromatin reorganizing proteins. Some of 

these newly developed compounds may provide clinical benefits over some of the presently used 

drugs [132]. 

One of the primary challenges of cancer chemotherapeutics is the targeting of cancer 

cells, while sparing normal cells of the surrounding tissue [144]. The use of vaccines and 

immune stimulants to specifically target tumors has generated promising results. For colon 

cancer, complementing traditional chemotherapy with IL2 and GM-CSF was shown to 

significantly increase patient survival [77]. However, immune stimulants can sometimes result in 

modest cell killing activity. Cell killing by the activated immune response includes direct cell 

killing by cytotoxic T cells and NK cells, as well as cell killing apoptotic ligands, such as TNF. 

We previously reported several novel synthetic small molecules that dramatically 

increase colon cancer cell death by TNF and other death ligands, while being unable to induce 

apoptosis on their own [145]. Interestingly, many of these compounds also induced mitotic 

arrest. To gain insight into the mechanisms of action of these compounds, we studied the 

structure-activity relationship of a particularly promising class of piperazine-based compounds. 

Here we report a structure-activity relationship study of this class of compounds and identify a 

highly active derivative, AK301. Furthermore, we show that AK301 hampers tubulin 

polymerization, triggers the formation of multiple microtubule organizing centers (MTOCs), and 

increases the surface expression of TNFR1. Molecular docking studies indicate that AK301 

binds to β-tubulin near the colchicine-binding site, but in a novel orientation. Lastly, AK301 was 

found to be more effective in sensitizing cancer cells to TNF-induced apoptosis than other 

known microtubule destabilizing agents. We propose that AK301 and its derivatives represent a 
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novel class of microtubule-targeting compounds that will be useful for studying the relationship 

between microtubule dynamics and apoptosis sensitivity. This class of compounds may also have 

beneficial therapeutic properties due to their ability to sensitize cancer cells to ligand-induced 

apoptosis. 

 

3.3. Materials and Methods 

3.3.1. Cell culture 

HT29 and HCT116 colon cancer and WI38 fibroblast cell lines were obtained from the 

American Type Culture Collection (Manassas, VA). HT29 and WI38 cell lines were cultured in 

McCoy’s 5A medium and MEM medium, respectively, with 10% fetal bovine serum, non-

essential amino acids and antibiotic/antimycotic (Life Technologies, Guilford, CT). The 

compounds tested were obtained from the ChemBridge DIVERSetTM library (San Diego, CA). 

Drug treatments were performed approximately 24 h after passage for 18 h, unless otherwise 

indicated. TNF was obtained from Pierce Protein Research Products (Rockford, IL), TRAIL was 

obtained from R&D Systems (Minneapolis, MN), and α-Fas antibody (clone CH11) was 

obtained from Millipore (Billerica, MA). 

 

3.3.2. Flow cytometry 

HT29 and WI38 were analyzed for DNA content by ethanol fixation and staining with 

propidium iodide as previously described [89]. Floating and adherent cells were combined and 

analyzed by flow cytometry. Adherent cells were harvested using trypsin-EDTA, centrifuged 

together with the floating cells at 100 X g for 5 min and resuspended in 1 ml of cold saline GM. 

Cells were then fixed by adding 3 ml of cold 100% ethanol while gently vortexing and stored at -
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20°C for at least 2 h. Cells were then pelleted and washed once with PBS containing 5 mM 

EDTA. Pelleted cells were stained with 30 μg/ml propidium iodide (Molecular Probes, Life 

Technologies Corp.) and 0.3 mg/ml RNase A (Sigma-Aldrich, St. Louis, MO) in 1 ml PBS 

solution for 40 min in dark at RT. The stained cells were filtered through 35 μm cell strainer 

tubes (BD Biosciences, San Jose, CA) prior to analysis on FACSCalibur flow cytometry (BD 

Biosciences) using Cell Quest software (BD Biosciences). The data were analyzed using FlowJo 

(version 9.6.2 for Mac, TreeStar Inc., Ashland, OR). 

 

3.3.3. Cell viability assay 

Cell viability was assessed using Trypan blue exclusion assay. After treatment, the cells 

were incubated with Trypan blue at room temperature. Viable/dye excluding cells were then 

counted using a hemocytometer. 

 

3.3.4. Immunofluorescence microscopy 

Cells cultured on coverslips were fixed with 4% paraformaldehyde or 100% ice cold 

methanol and then permeabilized with 0.5% Triton X-100 in PBS. Cells were blocked in 5% 

serum (in PBS) and then incubated for 1 h at room temperature on the shaker with the primary 

antibody (in 5% serum) against phosphohistone H3 Ser 28 (sc-12927, Santa Cruz Biotechnology, 

Santa Cruz, CA), β-tubulin (E7 monoclonal antibody, Developmental Studies Hybridoma Bank), 

or aurora kinase A (BD Biosciences). γ-tubulin antibody (Abcam, Cambridge, MA) incubation 

was performed overnight at 4°C. Appropriate secondary antibodies (Jackson ImmunoResearch, 

West Grove, PA) were used for 45 min incubation. Nuclei were visualized using DAPI (5 μg/ml 

in PBS; DI306, Life Technologies). Coverslips were mounted on slides using ProLong Gold 
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Antifade Reagent (Life Technologies). Images were acquired using Nikon A1R Confocal 

Microscope (version 2.11, Nikon Instruments Inc.) and NIS-Elements Advanced Research 

Software (version 4.13.01, build 916, Nikon Instruments Inc.). Quantification of immunostaining 

was performed using ImageJ image analysis software (http://rsb.info.nih.gov/ij) as previously 

described [88]. Following background subtraction and image stacking, both DAPI and 

immunofluorescence images were merged. Image brightness and contrast was modified with 

Adobe Photoshop software CS6 (Adobe Systems). 

 

3.3.5. In vitro tubulin polymerization assay 

The HTS-tubulin polymerization assay kit (BK004P, Cytoskeleton, Inc, Denver, CO) was 

used as per manufacturer instructions. The reaction assay contained 100 μl of 4 mg/ml tubulin in 

G-PEM buffer (80 mM PIPES pH 6.9, 0.5 mM EGTA, 2 mM MgCl2, and 1 mM GTP. 10 μl of 

10X compounds were pre-warmed to 37°C in a half area 96-well plate (dH2O was used as 

control). The polymerization was carried out at 37°C and light scattering was recorded at 340 nm 

every minute for 60 min using Spectramax M2 absorbance plate reader (Molecular Devices, 

Sunnyvale, CA). 

 

3.3.6. Whole cell microtubule analysis 

Microtubules in whole cells were analyzed by flow cytometry as described previously 

[146]. Cells were cultured in 24-well plates for 24-36 hrs and treated with the colchicine, 

AK301, or AK302 for 16 hrs. The medium was collected and the cells were harvested by trypsin 

EDTA treatment and pelleted by centrifugation at 600 x g for 5 min. Cell pellets were 

resuspended and fixed with 0.5% glutaraldehyde under permeabilizing conditions in microtubule 
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stabilizing buffer (MTSB; 80 mM PIPES (pH 6.8), 1 mM MgCl2, 5 mM EDTA, and 0.5% Triton 

X-100) for 10 min. Glutaraldehyde was quenched with 700 μl of 1 mg/ml NaBH4 in PBS. Cells 

were pelleted by centrifugation at 1000 x g for 7 min. Cells were blocked with 5% donkey serum 

and immunostained with β-tubulin (E7 monoclonal) antibody for 1 hr at RT, followed by 

secondary staining with Alexa Fluor® 488 donkey anti-mouse antibody (Life Technologies) for 1 

hr. Finally, cells were pelleted by centrifugation and treated with 0.3 mg/ml of RNase A and 50 

μg/ml of propidium iodide solution in PBS. Cells were analyzed by flow cytometry. All steps in 

this protocol were carried out at room temperature. 

 

3.3.7. In silico molecular docking 

Structural representations of the ligand molecules (AK3, AK301, AK302, AK303, and 

AK304) were drawn using Accelrys Draw (version 4.1, Accelrys, Inc.) in MOL2 format and 

converted to PDB format using Accelrys Discovery Studio Client (version 3.5). Individual PDB 

files were modified in AutoDock using MGLTools 1.5.6 (Scripps Institute, La Jolla, CA). 

Crystal structures of tubulin complexed with colchicine, paclitaxel, and vinblastine (PDB IDs 

1SA0 [147], 1TUB [148], and 4EB6 [149], respectively) were obtained from the Protein Data 

Bank. Water molecules, ligands and other heteroatoms were removed from the protein molecules 

using Accelrys Discovery studio client (version 3.5, Accelrys, Inc.). Addition of hydrogen atoms 

to the protein was performed using MGLTools (version 1.5.6) for AutoDock. For each known 

ligand type, grid maps were generated that corresponded to their respective known binding sites 

on tubulin. 

AutoDock 4.2 and Vina 1.1.2 were used for initial docking studies [150]. Generally, the 

docking parameters were left to the default settings. However, the grid spacing was changed 
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from 0.375 to 1.0. The size of the grid was 30 Å X 30 Å X 30 Å. The internal scoring function 

was used to assess receptorligand interactions in five independent runs. 

Additionally, Molegro Virtual Docker (MVD) software version 6.0 was used to perform 

computer simulated docking analysis in order to confirm the least-energy poses acquired using 

AutoDock Vina. Charges for both tubulin and the ligands were calculated by MVD and assigned 

to their respective models. Moreover, probable explicit hydrogens were added to tubulin as well 

as the ligands, possible missing bonds were assigned, and side chain minimization was 

performed. Finally, flexible torsions were manually applied to the ligands. Since tubulin is a 

relatively large protein, a molecular surface was created using MVD workspace grid points and 

top three cavities were identified using expanded van der Waals method for the molecular 

surface with volumes ranging from 5 to 10,000 cubic units and default settings. To perform 

docking, the cavity containing the colchicine-binding domain was used with a radius of 20 to 

cover the entire cavity. MolDock score with a grid resolution of 0.30 Å was used as a scoring 

function for the simulation [151]. Ten runs were performed for each of the ligands using 

MolDock simplex evolution (SE) algorithm for fast and accurate docking and scoring. 1500 

iterations were performed for each of the runs to achieve least minimized energy poses for the 

ligands. During the virtual screening process, internal electrostatic interaction and hydrogen 

bond between ligand and protein were permitted. Energy minimization and H-bond optimization 

was applied to each of the poses post run. 

 

3.3.8. Caspase-3 assay 

Caspase-3 activity was determined as previously described [87, 145]. Cells were 

collected, centrifuged at full speed, and washed once with PBS. Pelleted cells were lysed by two 
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rounds of freeze-thaw in lysis buffer containing 10 mM Tris-HCl (pH 7.5), 0.1 M NaCl, 1 mM 

EDTA, and 0.01% Triton X-100 and centrifuged at 10,000 X g for 5 min. The assays were 

performed on 96-well plate by mixing 50 μl of lysis supernatant with 50 μl of 2X reaction mix 

(10 mM PIPES pH 7.4, 2 mM EDTA, 0.1% CHAPS, 10 mM DTT) containing 200 nM of the 

fluorogenic substrate Acetyl- Asp-Glu-Val-Asp-7-Amino-4-methylcoumarin (DEVD-AMC; 

Enzo Life Sciences). The fluorescence was quantified at the start of the reaction and after 30 

min. Protein concentrations were determined using CBQCA Protein Quantitation Kit (Life 

Technologies). Caspase activity was determined by dividing the change in fluorescence by total 

protein content of the reaction mixture. 

 

3.3.9. Western blot 

RIPA buffer was used for total protein extraction and NP-40 buffer was used for 

membrane protein extraction [145]. 20 μg of protein was denatured under reducing conditions 

[90, 91] and separated on 4-20% gradient gels (Bio-Rad Hercules, CA) and transferred to 

nitrocellulose by voltage gradient transfer. The resulting blots were blocked with 5% (w/v) non-

fat dry milk in PBS + 0.1% (v/v) Tween-20. Specific proteins were detected with appropriate 

antibodies using Signal- FireTM Elite ECL Reagent (Cell Signaling Technology, Inc., Danvers, 

MA). Immunoblotting antibodies were cleaved caspase-8 (18C8, Cell Signaling Technology), 

caspase-9 (human-specific, Cell Signaling Technology), TNFR1 (H-5, Santa Cruz 

Biotechnology), E-cadherin (G-10, Santa Cruz Biotechnology), and β-actin antibody (I-19, Santa 

Cruz Biotechnology). 
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3.3.10. Cell surface TNFR1 analysis 

Cells were treated in a 24-well plate as described above. Treated live cells were 

transferred to ice, washed once with PBS and blocked with 5% donkey serum. Cells were 

immunostained with TNFR1 antibody overnight at 4°C, followed by staining with Alexa Fluor® 

488 antibody for 1 hr at RT. Cells were fixed with 4% PFA, washed, and harvested by trypsin 

EDTA. Cells were pelleted by centrifugation and analyzed by flow cytometry. 

 

3.3.11. Statistical analyses 

All results are reported in triplicates as mean ± standard error of mean, unless specified 

otherwise. One-way analysis of variance (ANOVA) was used for comparing more than two 

groups. Tukey’s post-hoc test was employed to determine the significance of differences 

between multiple groups, with P < 0.05 considered significant. Two-way ANOVA was used for 

more than two independent variables and Bonferroni correction was used for multiple 

comparisons (P < 0.05). 

 

3.4. Results 

3.4.1. Functional groups of AK3 mediate mitotic arrest in HT29 cells 

In previous studies, we identified AK3 compound from the ChemBridge DIVERSetTM 

library that induced mitotic arrest in colon cancer cells at low micromolar concentrations (0.5-1 

μM) [145]. To assess properties of the chlorophenyl and methoxybenzoyl functional groups of 

AK3, four different AK3 analogs were analyzed for their ability to induce mitotic arrest in HT29 

colon cancer cells at 5 μM (Figure 3.1A). The analogs comprise positional isomers of chloride 

and methoxy groups on the phenyl (AK302) and benzoyl (AK303, AK304) rings, respectively, 
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as well as the substitution of an ethoxy (AK301) for methoxy on the benzoyl ring. Flow 

cytometric analysis of propidium iodide (PI)-stained HT29 colon cancer cells showed that a 

greater percentage of AK3-, AK301-, and AK303-treated cells arrested in G2/M phase of the cell 

cycle compared to untreated, AK302-, or AK304-treated cells (P < 0.0001) (Figure 3.1B). A 

titration of the most active compounds among the analogs (AK3, AK301 and AK303) and an 

assessment of the G2/M arrest by flow cytometry is shown in Figure 3.1C. AK301 induced a 

G2/M arrest more efficiently than AK3 or AK303 with a half maximal effective concentration 

(EC50) value of approximately 115 nM. Further, HT29 cells showed decreased growth in the 

presence of AK3 or AK301, with dose response curves showing a higher potency of AK301 

(Figure 3.1D). Together, these results indicate that the position of the functional groups on AK3 

derivatives play an important role in determining their activity in inducing cell cycle arrest. 

 

3.4.2. AK301 induces ad irreversible mitotic arrest in HT29 cells 

To determine whether AK301-treated cells arrested in mitosis, HT29 cells were analyzed 

for presence of the mitosis marker phospho-histone H3 Ser 28 (p-HH3). Figure 3.2A and 3.2B 

show that both AK3 and AK301 increased phospho-histone H3 Ser 28 staining, consistent with 

mitotic arrest. 

To further assess whether this state of mitotic arrest was reversible, AK301 was washed 

out of the growth medium after 18 hours of treatment and cell growth was observed at 24, 48, 

and 72 hours following drug washout. As shown in Figure 3.2B, AK301-treated cells did not 

recuperate after 72 hours post drug washout and showed significantly less growth compared to 

the untreated cells (P < 0.0001). 
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Figure 3.1. Structural changes in the side groups of AK3 dictate its potency in inducing 

mitotic arrest. 

(A) Structural analogs of AK3 [1-(3-chlorophenyl)-4-(2-methoxybenzoyl)piperazine] with 

modifications to the benzoyl group: AK301 [1-(3-chlorophenyl)-4-(2-ethoxybenzoyl)piperazine], 

AK303 [1-(3-chlorophenyl)-4-(3-methoxybenzoyl)piperazine], and AK304 [1-(3-chlorophenyl)-

4-(4-methoxybenzoyl)piperazine], and the phenyl group [1-(4-chlorophenyl)-4-(2-

methoxybenzoyl)piperazine]. (B) HT29 cells were treated with 5 µM of AK3 analogs for 18 h 

followed by an assessment of G2/M arrest by flow cytometry. Data suggest that AK3, AK301, 

and AK303 induce G2/M phase arrest, whereas AK302 and AK304 are inactive at this 

concentration (*P < 0.0001). (C) Dose-response analysis of AK3, AK301, and AK303-induced 

mitotic arrest by flow cytometry. AK3, AK301, and AK303 were titrated at different 

concentrations between 0 and 500 nM and G2/M was quantified by flow cytometry. AK303 

induced significantly less mitotic arrest compared to AK3- or AK301-treated cells. AK301 was 

found to be the most potent compounds. (D) Dose-response curves showing reduced cell growth 

of AK3- and AK301-treated cells with increasing concentration. Cell viability of AK3- and 

AK301-treated cells were assessed by trypan blue exclusion assay. 
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Figure 3.2. AK301 induces an irreversible mitotic arrest. 

(A) AK3 and AK301 induce mitotic arrest in HT29 cells. Cells treated with 5 µM of AK3 or 

AK301 for 18 h were fixed, permeabilized, and stained with phospho-histone H3 (p-HH3) as a 

marker of chromosome condensation and mitosis. (B) Quantification of p-HH3 staining in Figure 

3.2A shows a greater number of cells in mitosis. (C) Cells were treated with 500 nM of AK301 

for 18 h. AK301 was then wash out and cell growth was observed at 24, 48, and 72 hours. 

AK301-treated cells showed no significant growth after AK301 withdrawal (*P < 0.0001). 
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3.4.3. AK301 affects microtubule function and results in multiple microtubule organizing 

centers (MTOCs) 

To determine the effect of AK301 on spindle formation in the arrested cells, we 

performed immunostaining for β-tubulin. As shown in Figure 3.3A, AK301 induced the 

formation of multiple MTOCs, as is the case for AK3-treated HT29 cells. To further determine if 

the MTOC assemblies were stable or resulted from spontaneous microtubule assembly, HT29 

cells were stained for aurora kinase A (AukA) and γ-tubulin. Aurora kinase A is responsible for 

recruitment of γ-tubulin to established centrosomes and γ-tubulin serves to nucleate and orient 

microtubules. As shown in Figure 3.3B, multiple aurora kinase A and γ-tubulin centers were 

observed following AK301 treatment of HT29 cells. These data suggest that AK301 leads to the 

formation of multiple MTOCs, including deposition of aurora kinase A and γ-tubulin at the 

spindle poles. We performed a dose-response analysis of β- tubulin immunostaining to assess the 

effects of AK301 on the formation of multiple MTOCs. As shown in Figure 3.4A, AK301 

significantly induced spindle impairment or multipolarity compared to the inactive AK302 and 

AK304 at concentrations as low as 50 nM. We also quantified the number of aurora A kinase and 

γ-tubulin foci and found that AK301increased the number of these foci as well 

(Figures 3.4B and 3.4C). 
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Figure 3.3. AK3 and AK301 induce the formation of multiple microtubule organizing 

centers (MTOCs). 

HT29 cells treated with AK3 (1 µM) or AK301 (500 nM) were fixed and stained for (A) β-

tubulin to visualize spindle assembly, (B) Aurora kinase A (AukA) (red; top panel) to understand 

the basis of multiple spindle organization, and γ-tubulin (red, bottom panel) to observe spindle 

nucleation. AK3- and AK301-arrested cells have multiple spindle nucleation sites, from which 

spindles arise. 
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Figure 3.4. Quantification of MTOCs in AK301-treated cells. 

(A) Quantification of cells with impaired spindles visualized by β-tubulin staining show multiple 

spindle poles. Quantification of (B) Aurora kinase A foci in HT29 cells, and (C) γ-tubulin foci in 

HT29 cells suggest the formation of multiple MTOCs in AK301-treated cells (*P < 0.0001).  
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3.4.4. AK301 induces G2 arrest in WI38 lung fibroblast cells 

To assess the effects of AK301 on normal cells, we performed a dose response analysis 

for growth inhibition on WI38 lung fibroblast cells. As shown in Figure 3.5A, WI38 cells treated 

with AK3 or AK301 showed decrease in growth, similar to HT29 cells (Figure 1D). Comparison 

of the cell cycle data between AK301-treated HT29 and WI38 cells showed that AK301 induced 

a G2/M arrest in both cell lines (Figure .5B). However, quantification of mitosis using the 

mitosis-specific phospho-histone H3 staining revealed that AK301 induced significantly higher 

mitotic arrest in HT29 cells compared to WI38 cells (Figure 3.5C). Analysis of AK301-treated 

WI38 cells that were arrested in mitosis showed that they lacked multiple MTOCs and instead 

showed a more extensive microtubule breakdown (Figure 3.5D; arrowheads). AK301 altered 

microtubules of interphase cells; untreated WI38 cells showed elongated and spindle-shaped 

microtubules, whereas AK301-treated cells displayed a mesh-like network of microtubules. 

Together, these results suggest that AK301 can have cell-specific effects and that these effects 

may be mediated by changes in microtubule dynamics. 
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Figure 3.5. AK301 induces G2/M arrest in WI38 lung fibroblast cells. 

(A) Dose-response analysis of WI38 cell growth inhibition by AK3 and AK301. Cells were 

treated with the indicated concentrations of the compounds followed by an assessment of viable 

cell number in the cultures (*P < 0.0001). (B) AK3 and AK301 induce G2/M arrest in HT29 and 

WI38 cells. Comparative cell cycle analysis of G2/M arrest in HT29 and WI38 cells was 

performed by flow cytometry (*P < 0.0001). (C) AK301 induces higher mitotic arrest in HT29 

cells compared to that in WI38 cells. HT29 and WI38 treated with AK301 were immnostained 

for phospho-histone H3 and the mitotic index was determined in at least three microscopic fields. 
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Error bars indicate SEM (*P < 0.0001). (D) AK301-treated WI38 cells showed absence of 

spindle formation in mitotic cells. Treated cells were dual stained for phospho-histone H3 

(green) and β-tubulin (red) to visualize spindle assembly in arrested cells. Arrows indicate 

interphase cells, whereas arrowheads indicate mitotic WI38 cells. AK30 disrupts spindle 

formation as well as cytoskeletal microtubules. 
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Figure 3.6. AK301 reduces the rate of tubulin polymerization. 

(A) and (B) Tubulin subunits were allowed to polymerize in the presence of AK301, AK302, 

paclitaxel, or colchicine for 60 min. Tubulin polymerization (length of microtubules) was 

assayed in terms of absorbance at 340 nm. Assay indicates a decreased rate of tubulin 

polymerization in the presence of AK301, but not with AK302 (inactive compound), compared 

to control.  
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3.4.5. AK301 affects the rate of tubulin polymerization in vitro 

Given the formation of multiple MTOCs in AK301-treated HT29 cells (Figures 3.3A and 

3.3B) and the alteration of microtubule structures in WI38 cells, we assessed the effect of AK301 

on the rate of tubulin polymerization, in an in vitro tubulin polymerization assay. As shown in 

Figure 3.6A, addition of AK301 slowed the rate of tubulin polymerization compared to the 

control sample. In contrast, AK302, identified as the inactive analog of AK3, did not alter the 

rate of polymerization. Colchicine, a known inhibitor of microtubule polymerization, acts by 

binding the β-subunit of tubulin dimer, and prevents their addition to the growing polymer. 

Microtubule formation was almost completely inhibited in the presence of colchicine, compared 

to AK301 (Figure 3.6B). 

To assess the effect of AK301 on microtubule dynamics in vivo, we performed 

quantitative whole cell microtubule analysis as described previously. Figure 3.7A outlines this 

procedure that quantifies the degree of tubulin polymerization by flow cytometry. Figure 3.7B 

shows the mean fluorescence intensity (MFI) of mitotic cells treated with colchicine (500 nM), 

AK301 (250 nM), and its inactive analog, AK302 (1 μM). Colchicine shows the lowest 

microtubule fluorescence intensity, consistent with microtubule destabilization by colchicine. 

However, AK301-treatment shows a staining intensity intermediate to that of control and 

colchicine. AK302 did not induce significant reduction in staining. These data, along with the in 

vitro experiments, suggest that AK301 induces a partial breakdown of microtubules. 

 

3.4.6. In silico molecular modeling 

We performed molecular docking studies to assess tubulin as the potential target of AK301. We 

employed automated docking using AutoDock Vina with tubulin as the target receptor and 
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assessed SAR of the analogs to identify in silico conformations [150]. Colchicine, paclitaxel, and 

vinblastine were docked to their respective sites on tubulin to check for accuracy of molecular 

docking predictions (Figure A3; Figures A4A and A4B) [147-149]. AK3 and its analogs were 

docked to β-tubulin in the colchicine-, paclitaxel-, and vinblastine-binding sites. AutoDock Vina 

reported multiple conformations and corresponding binding affinities for each of the compounds 

in five independent trials. AK3 and its active analogs, AK301 and AK303, docked in same 

positions as indicated by superimposition of central piperazine core and the flanking functional 

groups of the small molecules (Figure A4C). The lowest energies for different compounds in 

known binding sites are shown in Table 1.1. Control binding affinities correspond to the energies 

obtained by docking colchicine, paclitaxel, vinblastine, and vincristine into their respective 

binding sites (vinblastine and vincristine were docked into the high affinity sites on tubulin). 

Active AK3 analogs showed compatibility for the colchicine site. In addition, the order of the 

predicted binding affinity matched the potency of AK3 analogs, as predicted by SAR studies. 
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Figure 3.7. Disruption of in vivo microtubules in HT29 colon cancer cells. 

(A) Schematic description of the methodology used for the assessment of in vivo microtubule 

stability in HT29 cells after AK301 treatment. (B) HT29 cells were treated with 500 nM 

colchicine, 250 nM AK301, or 1 µM AK302. Mean fluorescence intensity of mitotic cells was 

determined as described above. Data indicate decreased microtubule stability in AK301 and 

colchicine-treated cells, relative to AK302-treated and control cells (*P < 0.0001).  
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Figure 3.8A shows an in silico model of AK301 binding to tubulin in the colchicine-binding 

domain. Although AK301 docked into the colchicinebinding site, it assumed a different, novel 

orientation relative to colchicine. This orientation allows for hydrogen bond interactions between 

the oxygen atom of the ethoxy group or the carbonyl group and Asn 101 residue (3.0 Å and 2.9 

Å, respectively). Further, this places the hydrophobic chloride proximal to hydrophobic tubulin 

residues—Leu 255 (3.9 Å) and Ile 378 (3.5 Å) (Figure 3.8B). In contrast, moving the chloride 

group from 3’ C to 4’ C of the halophenyl ring to generate the less-active AK302 compound 

changes the conformation of the molecule in the tubulin binding site. The changed conformation 

of AK302 decreased hydrophobic interactions with Leu 255 (6.7 Å) and Ile 378 (9.6 Å), and 

increased the distance for hydrogen bond interactions (6.6 Å for methoxy group and 5.8 Å for the 

carbonyl group) at the other end of the molecule (Figure 3.8C). Similar changes in conformation 

were also observed when the position of the methoxy group was moved from 2’ C to 4’ C, as is 

the case with AK304 compound. In general, the docking scores obtained correlated with the 

predicted in vitro activity and fit the SAR of AK3 analogs, with AK301 being the most potent 

among the analogs (Table 1). To confirm AK301 binding in the colchicine- binding domain of 

tubulin, we also performed molecular docking simulations in Molegro Virtual Docker [151]. We 

performed ten runs for AK301, targeting the largest cavity in tubulin, containing the colchicine-

binding domain of tubulin. MolDock scoring function was used to assess the binding of the 

lowest energy poses. AK301, as predicted by AutoDock Vina, docked to the colchicine-binding 

domain of tubulin with the least energy poses superimposing each other (Figure 3.8D). The 

specific functional groups and their positions may, therefore, play an important role in 

determining the potency of AK3 analogs in inducing mitotic arrest in colon cancer cells. 
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Table 3.1. Predicted binding energies (in kcal/mol) of AK3 analogs docked in colchicine, 

paclitaxel, and high-affinity vinblastine site on β-tubulin. 

 

Compound Colchicine site Paclitaxel site Vinblastine site 

Control -8.8# -9.7† -10.7/-10.0‡ 

AK301 -8.7 -7.3 -7.5 

AK3 -8.2 -7.3 -7.5 

AK303 -8.3 -7.4 -7.6 

AK302 -8.1 -7.3 -7.5 
#colchicine, †paclitaxel, ‡vinblastine/vincristine 
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Figure 3.8. Predicted in silico novel binding orientation of AK301 to β-tubulin. 

(A) Novel orientation of AK301 in the colchicine-binding site of β-tubulin as modeled by 

AutoDock. AK301 (shown in green) is predicted to bind to tubulin the colchicine-binding 

domain (colchicine is shown in red), but in a different orientation. (B) Residues surrounding 

AK301 allow for strong hydrogen bond interactions with Asn101 of β-tubulin. Consequently, the 

chloride group is positioned in tubulin surrounded by hydrophobic residues (Leu255 and Ile378). 

(C) Changing the position of the chloride in AK3 from 3’ C to 4’ C generates the inactive 

compound AK302. This change disrupts the hydrogen bond interactions of the methoxy and 

carbonyl groups on the methoxy-substituted benzoyl ring. Decreased hydrogen bond interactions 

result in lower binding affinity of AK302 to tubulin (Table 3.1). (D) Least energy poses of 

AK301, as predicted by AutoDock Vina (gray) and Molegro Virtual DOcker (green), docked to 
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β-tubulin. The least energy pose of AK302, predicted by MVD, had a similar orientation to that 

predicted by AD Vina.  
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3.4.7. TNF-dependent induction of apoptosis in AK301-treated cells 

AK3 and other piperazinebased compounds were originally identified by their ability to 

acutely sensitize colon cancer cells to ligand-induced apoptosis [145]. To determine whether 

AK301 could also induce cell death in combination with TNF, we performed a dose-response 

analysis of AK301 in the presence and absence of TNF (Figure 3.9A). Analysis of the sub-

diploid cell population indicated that AK301, on its own, did not induce apoptosis in HT29 colon 

cancer cells. However, in the presence of TNF, AK301- treated cells underwent significant 

apoptosis (EC50 of 172 nM) at concentrations approximately 5 times lower than those reported 

for AK3 [145]. 

To determine the association between mitotic arrest and TNF-induced apoptosis, the 

compounds shown in Figure 1A were tested for their ability to induce apoptosis in the presence 

of TNF. Figure 3.9B shows that only the compounds that induced a mitotic arrest could induce 

apoptosis in combination with TNF. This finding suggests an association between mitotic arrest 

and TNF sensitivity. To further assess the correlation between the two events, cell cycle analysis 

of HT29 cells was performed. As shown in Figure 3.9C, most of the cells in the control 

population are in the G1 phase of cell cycle. With TNF treatment alone, no significant shifts are 

observed. However, with the addition of AK301, cells shifted from G1 to G2/M. Finally, co-

treatment of HT29 cells with AK301 and TNF resulted in a decrease in G2/M population and a 

subsequent appearance of sub-diploid population. These data suggest that the sub-diploid 

population is likely derived from the G2/M arrested cells. 
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Figure 3.9. AK301-induced mitotically arrested cells undergo TNF-dependent apoptosis. 

(A) Dose-response analysis of AK301-treated cells in the presence and absence of TNF. HT29 

cells were treated with AK301 (500 nM) or AK301 plus TNF (50 ng/ml) for 18 h, PI-stained and 

analyzed by flow cytometry. Significant apoptosis was observed only in the combination 

treatment (*P < 0.0001). (B) Induction of cell death following combination treatment with active 

AK3 analogs and TNF. Cells were treated with 5 µM of AK3, AK301, or AK303 and TNF (50 
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ng/ml) showed high percentage of sub-diploid population compared to TNF treatment alone (*P 

< 0.0001). Percentages of sub-diploid population with 5 µM of AK302 or AK304 and 50 ng/ml 

of TNF treatment were similar to those treated with TNF alone. (C) AK301 induces mitotic 

arrest and the appearance of sub-diploid cell fragments in the presence of TNF. In the presence 

of AK301 alone (500 nM), cells arrest in G2/M phase of mitosis (bottom, left panel). In the 

presence of TNF alone, there is no significant change in the cell cycle distribution (top, right 

panel). Following combination treatment with Ak301 and TNF (50 ng/ml), a decrease in the 

G2/M population was observed accompanied by the appearance of a sub-diploid population (*P 

< 0.0001).  
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3.4.8. Relationship between mitotic arrest and cancer cell apoptosis 

To further examine the relationship between mitotic arrest induced by AK301 and its 

analogs and apoptosis, we performed a dose-response analysis of AK301, AK302, and AK304 

on mitotic arrest and caspase-3 activation. As shown in Figure 3.10A, AK301 induced mitotic 

arrest in a dose-dependent manner, whereas AK302 and AK304 were inactive even at 

concentrations of 5 μM. Analysis of dose-dependent caspase-3 activity (using DEVD-AMC 

fluorogenic substrate) for these compounds in the presence of TNF is shown in Figure 3.10B. 

Data indicates similar trends in caspase-3 activation as those observed for mitotic arrest. These 

results demonstrate a close relationship between mitotic arrest by AK301 and TNF-induced 

apoptosis. 

There are a number of known inhibitors of microtubules that are capable of inducing 

mitotic arrest [152-154]. To determine how these compounds compare to AK301 in sensitizing 

cells to TNF, HT29 cells were treated with two different concentrations each of AK301, 

colchicine, nocodazole, and a vinca alkaloid—vincristine in the absence or presence of TNF for 

18 hours. Cell extracts were prepared for capase-3 enzymatic assay. As shown in Figure 3.10C, 

none of the compounds induced caspase-3 activation on their own. However, upon co-treatment 

of HT29 cells with the drugs and TNF, significant caspase-3 activation was observed (Figure 

3.10D). Interestingly, AK301 induced the highest levels of caspase-3, even at 125 nM (P < 

0.0001). Together with the results of previous experiments, this suggests that AK301 is a novel, 

potent inhibitor of microtubules capable of inducing arrest on its own and increasing cell 

sensitivity to TNF-induced apoptosis. 
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Figure 3.10. Effect of microtubule disruption on colon cancer cell apoptosis in the presence 

of TNF. 

(A) Dose-response analysis of AK301, AK302, and AK302 mitotic arrest of HT29 cells. Cells 

were stained with p-HH3 post treatment and the mitotic index was determined. Data indicate a 

dose-response mitotic index in cells treated with AK302. (B) Dose-response analysis of AK301, 

AK302, and AK304 caspase activation in HT29 cells. Cell lysates were prepared and tested for 

caspase-3 activity using DEVD-AMC fluorogenic substrate. Data indicate dose-response of 

caspase-3 activation in cells treated with AK301, similar to mitotic index in Figure 3.10A (#P < 

0.05, ‡P < 0.01, *P < 0.0001). HT29 cells were treated with microtubule inhibitors in the absence 
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(C) or presence (D) of TNF (50 ng/ml). AK301 and other known microtubule inhibitors 

(colchicine, nocodazole, and vincristine) did not induce significant levels of caspase-3 activity on 

their own (panel A). However, in combination with TNF, AK301 induced significantly higher 

levels of caspase-3 in HT29 cells, relative to the other microtubule destabilizers (panel B) (*P < 

0.0001). 
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3.4.9. Generality of AK301 activity 

To assess the general effects of AK301 sensitization, we determined the effect of AK301 

on caspase-3 activation by TRAIL and Fas. As show in Figure 3.11A, AK301 enhanced TRAIL-

induced caspase-3 activity. HT29 cells were more sensitive to Fas ligation, but AK301 further 

enhanced Fas-induced caspase-3 activity, as shown in Figure 3.11B. AK301 was also tested on 

HCT116 cells, another human colon cancer cell line (Figure 3.11C). HCT116 cells were more 

sensitive to TNF-induced apoptosis than HT29 cells. Despite their sensitivity, AK301 

significantly enhanced TNF-induced caspase-3 activation over TNF background. (#P < 0.01). 

These data suggest that AK301 is broadly active on different cancer cell lines and with different 

death ligands, such as TRAIL and Fas. 

 

3.4.10. Increased TNFR1 cell surface expression mediates enhanced caspase-8 and caspase-9 

activation 

TNF is coupled to caspase-8 through TNFR1, which in turn can activate procaspase-3 

[155]. Moreover, activated caspase-8 can interact with the intrinsic death pathway by activating 

caspase-9 [156]. We analyzed the presence of caspase-8 and -9 in AK301 and AK301/TNF 

treated cells by immunoblotting. As shown in Figure 3.12A, AK301 or TNF treatment alone did 

not induce caspase-8 or caspase-9 activation. However, cells co-treated with AK301 and of both 

of these caspases. 

To determine if caspase-8 was activated by an increased TNF-TNFR1 coupling at the cell 

surface, we assessed the levels of TNFR1 in the membrane fraction of HT29 cells (an NP40 

extract) relative to a whole cell extract (RIPA). As shown in Figure 3.12B, cells treated with 

AK301 showed an increase in the appearance of TNFR1 in the membrane fraction. Moreover, 
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we observed an increase in TNFR1 in the RIPA extract after treatment with AK301 or TNF 

alone, which suggests that AK301 may act as a trigger for TNFR1 production. We quantitatively 

analyzed cell surface expression of TNFR1 in HT29 cells after treatment with AK301 analogs to 

determine if TNFR1 surface expression was specific to AK301. As shown in Figure 3.12C, 

HT29 cells treated with AK301 showed an increase in TNFR1 cell surface staining, whereas the 

other inactive analogs did not. Together, these data suggest that AK301 induces an increase in 

cell surface expression of TNFR1. This increase in surface expression may facilitate TNF 

binding and trigger an apoptotic cascade. 
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Figure 3.11. Effect of AK301 on other colon cancer cell lines and on TRAIL- and Fas-

mediated cell death. 

AK301 accentuated caspase-3 activation in the presence of (A) TRAIL, or (B) by Fas ligation. 

AK301-treated HT20 cells were co-treated with TRAIL (20 or 40 ng/ml) or anti-Fas antibody 

(10 µg/ml) and analyzed for caspase-3 activation. Both TRAIL and Fas ligation significantly 

enhanced caspae-3 activation, despite HT29 cells being more sensitive to Fas ligation (*P < 

0.0001). (C) TNF was titrated on to HCT116 colon cancer cells in the presence or absence of 500 

nM of AK301. AK301 significantly increased caspae-3 activity as observed by DEVD-AMC 

cleavage (*P < 0.0001), even though HCT116 cells are inherently more sensitive to TNF-

induced cell death. 
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Figure 3.12. Increased TNFR1 cell surface expression and caspase-8 activation in AK301-

treated cells. 

(A) AK301 enhances TNF-induced activation of caspase-8 and caspase-9 (*P < 0.0001). Cells 

treated with AK301 for 16-18 h in the presence or absence of TNF. Immunoblot analysis of cell 
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lysates with antibodies against fill length and cleaved caspase-8 and caspase-9 showed cleaved 

caspase-8 and caspase-9 in cells co-treated with AK301 and TNF. (B) AK301 induces increased 

cell surface expression of TNFR1 on HT29 cells. Immunoblot analysis of an NP40 fraction 

(membrane proteins) and RIPA fraction (total protein/cell lysate) showed an increase in TNFR1 

in the membrane fraction post AK301 treatment. (C) Increase in cell surface TNFR1 expression 

by flow cytometry. HT29 cells were treated with AK301 and its less active analogs were stained 

for TNFR1 and then fixed for flow cytometry. Data indicate increased cell surface expression of 

TNFR1 in AK301-treated cells, but not with the inactive analogs of AK301. 
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3.5. Discussion 

We previously identified a class of small molecules that induced mitotic arrest in colon 

cancer cells and sensitized these cells to apoptosis in the presence of death ligands, such as TNF 

and FasL [145]. Here, we performed a detailed structure-activity relationship study on a 

piperazine-based compound (AK3) that was initially found to be highly effective at sensitizing 

colon cancer cells to apoptosis. Specifically, we identified 1-(3-chlorophenyl)-4-(2-

ethoxybenzoyl)piperazine, referred to as AK301, that can induce mitotic arrest in colon cancer 

cells with an EC50 of ≈ 115 nM. This derivative is approximately five-fold more potent than the 

original AK3 compound identified in the initial screen. AK301 also increased the sensitivity of 

HT29 and HCT116 human colon cancer cell lines to TNF-induced apoptosis at relatively low 

concentrations. AK301 was also capable of inducing cell death in the presence of TRAIL and 

FasL. Our SAR studies also revealed a number of related compounds that were inactive for both 

mitotic arrest and TNF sensitization (AK302 and AK304). Together these compounds indicate a 

close relationship between mitotic arrest and sensitivity to TNF-induced apoptosis. In addition, 

these molecules were employed to determine a potential cellular target leading to mitotic arrest 

and apoptosis. 

Characterization of the mitotic arrest state of AK301-treated cells indicated multipolar 

spindle assembly. The formation of the multipolar spindles was accompanied by appearance of 

multiple γ-tubulin and aurora kinase A staining loci, which is consistent with disruption of 

centrosome regulation and bipolar spindle formation. Most cancer cells have over-replicated 

centrosomes [157, 158], which are clustered at the poles during mitosis [159]; disruption of 

centrosome clustering by disruption of microtubule spindles by AK301 may prevent the 

concerted segregation of supernumerary centrosomes and lead to spindle multipolarity [160]. 
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These complex, multipolar structures are apparently difficult to resolve as cell division is 

significantly inhibited even after the removal of AK301. The degree of AK301-induced mitotic 

arrest is cell-type dependent. Proliferation of the WI38 lung fibroblast cell line was reduced by 

AK301, but cells arrested more frequently in G2 than in mitotic phase. Although the reason for 

this difference in arrest phase is not known, it may be related to the presence of functional cell 

cycle checkpoints in non-transformed WI38 cells. Previous studies have shown that the 

checkpoint with forkhead and ring finger domains (CHFR) protein is a critical component in the 

cellular response to mitotic stress (including stress induced by microtubule disruption [161, 162]. 

Cells expressing a functional CHFR protein can delay entry into mitosis, thereby preventing 

catastrophic events during mitosis [163, 164]. On the other hand, studies have shown that HT29 

cells and other cancer cells down-regulate CHFR expression (through promoter hyper-

methylation) and are more likely to enter mitosis and not recover [165, 166]. The lack of 

functional mitotic checkpoints likely contributes to the effectiveness of mitosis-targeting 

chemotherapeutic agents and may explain to the different responses of HT29 and WI38 cells to 

AK301. However, microtubule disruption was observed in both arrested HT29 cells and WI38 

interphase cells treated with AK301. This finding suggests that AK301 may target microtubules. 

This target is further supported by in vitro and in vivo tubulin polymerization studies and by in 

silico docking of AK301 to tubulin. It remains possible that AK301 interacts with other cellular 

proteins to achieve its effect of the cell cycle arrest and apoptosis, but all our dose-response and 

structure-activity studies point to microtubules as being an important target. 

Microtubules are filamentous polymers of the cytoskeleton, composed of repeating α/β 

tubulin heterodimers, responsible for determining cell shape, motility, intracellular transport, and 

cell division [131]. Microtubules have long been known as the drivers of chromosome migration 
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and chromosome segregation [167]. Microtubules become highly dynamic during mitosis and 

generate bipolar spindles that capture the sister chromatids and align them at the equatorial plate 

[168, 169]. With proper chromosome alignment and cellular signaling, cells enter into anaphase 

and complete cell division [170]. The importance of microtubules in mitosis has made them a 

fruitful target for cancer therapies. However, it is clear that not all tubulin disruptors are equally 

useful as cancer therapies. This may be due in part to their influence on apoptosis pathways. 

Here we show that among microtubule disruptors, AK301 is particularly potent at sensitizing 

cancer cells to TNF and other apoptotic ligands. The interaction of microtubules with apoptosis 

is not limited to disrupting agents since paclitaxel can also sensitize cancer cells to TNF [171]. 

The mechanism by which apoptotic signaling is enhanced by microtubule targeting agents is not 

clear, but further study of this effect could improve our understanding of apoptosis regulation 

and may lead to the generation of more effective microtubule targeting agents. Our present data 

point to an increase in the expression of TNFR1 on the surface of cancer cells. 

Molecular docking was employed to assess the potential of AK301 binding to tubulin 

dimers. For this analysis, we focused on the microtubule binding sites for colchicine, paclitaxel, 

and vinblastine. Molecular docking defines energy-optimized ligand orientations formed 

between the drug and its receptors [172]. Molecular docking predictions of AK301 and its 

derivatives showed relatively high affinity for the colchicine-binding region of tubulin, but 

docked in a different orientation than colchicine. Further analysis of these in silico complexes 

supported the significance of this binding position; we found that the longer chain ethoxy group 

of AK301 favored strong hydrogen bond interactions and positioned the chlorophenyl ring in a 

hydrophobic pocket. In summary, this theoretical structural analysis predicted the affinity of 

AK301 for tubulin. 
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We propose that AK301 represents a novel class of mitotic inhibitors, capable of 

inducing mitotic arrest on its own and inducing apoptosis in combination with TNF with high 

efficiency. How mitotic arrest leads to ligand-dependent cell death is not fully understood. We 

previously showed that mitotically arrested cells have increased cell surface expression of 

TNFR1 [145]. Increased TNF-TNFR1 interactions at the cell surface (or following TNF 

internalization) may increase the formation of death-inducing signaling complex (DISC) and 

caspase-8 activation [173, 174], which has been observed in arrested cells. Interestingly, AK301 

was the most potent TNF-sensitizing agent tested in these studies, relative to other well-studied 

microtubule inhibitors (colchicine, nocodazole, and vincristine). How AK301 achieves such a 

high degree of TNF sensitization is not clear. Based on our tubulin polymerization assay, AK301 

reduces the rate of tubulin polymerization, but does not prevent it completely (like colchicine). 

We speculate that AK301 interferes with tubulin polymerization, but just enough such that the 

cells can continue to deliver and present TNFR1 and/or Fas on the cell surface. However, it 

should be noted that AK301 might possibly interact with a microtubule-related target or an 

upstream target that affects tubulin polymerization. The activity of the AK301 class of 

compounds, both as effective mitotic inhibitors and as apoptotic ligand-sensitizing agents, 

suggests that they may be well-suited for cancer treatment, particularly when used on cancers 

with a high inflammatory cell infiltrate or following treatment with an immune stimulant. For 

basic research applications, this class of compounds should help illuminate how microtubules are 

employed to regulate apoptosis sensitivity. 
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CHAPTER 4 

Novel microtubule inhibitor AK301 promotes the mitosis-to-apoptosis transition 

 

4.1. Abstract 

Precise genomic division during mitosis is a well-orchestrated process, mediated by 

microtubule spindles. Mistakes in the genomic division may result in cell cycle arrest or 

apoptosis, and if unchecked, can drive chromosome instability and tumorigenesis. Mitotic 

inhibitors are widely utilized chemotherapeutic agents, which take advantage of the high 

proliferative nature of cancer cells and defects in their m itotic checkpoints. We have identified a 

class of novel piperazine-based microtubule inhibitors, of which AK301 (1-(3-chlorophenyl)-4-

(2-ethoxybenzoyl)piperazine), is the most potent derivative identified to date. Compared to other 

mitotic inhibitors, we show that AK301-arrested cells readily enter apoptosis following 

compound withdrawal or death ligand treatment (IC50 ≈ 150 nM). This effect was more 

pronounced in p53-normal colon cancer cells. AK301-treated cells also exhibited higher levels of 

mitosis-associated ATM signaling and caspase-3 activation. Immunofluorescence confocal 

imaging of AK301-treated cells revealed the formation of characteristic multiple microtubule 

organizing centers and reduced microtubule growth. Upon AK301 withdrawal, microtubule 

networks and spindles reformed and readily entered apoptosis. In summary, our data show the 

development of a new class of mitotic targeting agents that may be useful for further drug 

development. This class of compounds can also serve as chemical probes for studying 

microtubule dynamics and cell signaling pathways regulating the mitosis-to-apoptosis transition. 
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4.2. Introduction 

Mitosis is an intricate process in actively dividing cells, orchestrating a myriad of kinases 

and signaling pathways [129, 175]. Ascribing to this complexity, mitosis is considered to be the 

most sensitive phase of the cell cycle [132]. A number of mitotic checkpoints ensure the fidelity 

of chromosome segregation and cytokinesis; failure of mitotic checkpoints often results in 

chromosomal alterations, culminating in mitotic catastrophe or cancer-promoting chromosomal 

instability [130, 133]. Cancer cells often lack important checkpoint activities and will execute 

mitosis with improper spindle assembly [130]. Therefore, mitotic inhibitors are among the most 

widely utilized chemotherapeutic agents in the treatment of a number of malignancies [132]. 

However, the response of the cancer cells to mitotic inhibitors can be distinctly different–some 

cells remain arrested in mitotic phase, while others exit division and undergo apoptosis [176, 

177]. In addition, different mitotic inhibitors result in varying levels of apoptosis [132]. How 

microtubule disrupting agents result in apoptosis and what cellular factors make the decision of 

mitotic arrest to apoptosis remain elusive. Previous studies indicate that the spindle assembly 

checkpoint (SAC) during mitosis is necessary for efficient induction of apoptosis; compromising 

SAC significantly reduces the sensitivity of anti-mitotic agents, including microtubule poisons 

[178, 179]. Thus, it is important to understand alterations in mitotic processes to effectively 

target cancer cells for apoptosis. 

The SAC is enforced by a complex of proteins, including MAD2, BUB1, BUBR1, 

CHFR, and several others that are recruited to the kinetochores and centrosomes to ensure proper 

segregation of genetic material. MAD2, BUB1, and BUBR1 form the core of the SAC, while 

proteins, such as CHFR, act as modulators of spindle checkpoint by coordinating early mitotic 

progression and delaying chromosome condensation in cases of mitotic stress [180, 181]. 
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Prolonged mitotic arrest due to activation of the SAC may result in senescence or apoptosis [177, 

182]. Inactivation of checkpoint in cancer generally occurs through mutations in the core SAC 

proteins, suppressing the activity of mitotic checkpoint. In addition, studies also evidence 

inactivation of CHFR gene through hypermethylation [181]. Cancer cells, therefore, usually 

exhibit a dysfunctional mitotic checkpoint to continue to divide without restrictions imposed by 

the SAC. 

One of the major hallmarks of cancers is the suppression of apoptotic responses [22]. The 

p53 protein is a tumor suppressor that acts as a guard against a variety of stress signals and 

mediates cellular arrest and/or apoptosis [183, 184]. Studies indicate that p53 may participate in 

the mitotic checkpoint as a protective measure against abnormal chromosomal ploidization due 

to mitotic failure [185]. BUBR1 directly interacts with and phosphorylates p53 at Ser15 and 

Ser46 residues [185]. Moreover, activation by phosphorylation of ATM at Ser1981 in response 

to spindle damage also stabilizes p53 during M phase, enforcing the SAC [186, 187]. Activated 

p53 in the arrested cells acts post-mitosis to eliminate cells with chromosome aberrations and 

polyploidy [185]. Missense mutations in p53, found in about 50 percent of human cancers, result 

in increased risk of DNA damage, errors in mitosis, and suppression of apoptosis [188, 189]. 

Moreover, mutations also occur in the p53 DNA binding domain, indicating that its activity as a 

transcription factor is pivotal for cancer suppression [190-192]. How this activity could function 

on condensed mitotic chromosomes is not clear, but it may determine the fate of cells following 

exit from mitosis. 

We previously reported the identification of synthetic small molecule inhibitors that 

dramatically enhanced colon cancer cell death strictly in the presence TNF and other death 

ligands [145, 193]. The most potent of this piperazine-class of compounds, 1-(3-chlorophenyl)-4-
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(2-ethoxybenzoyl)piperazine, referred to as AK301, was found to have activity in the low 

nanomolar range (EC50 ≈ 115 nM) [193]. To gain insight into the mechanism of apoptosis in 

AK301-arrested cells, we studied the mitotic arrest state of AK301-treated cells in HCT116 cells. 

HCT116 cells differ from previously studies HT29 cells in a number of ways.. First, HCT116 

cells are MLH1-deficient and exhibit weakened G2/M checkpoint [194]. Importantly, these cells 

have normal p53 tumor suppressor gene. Here, we show that apoptosis in HCT116 cells can be 

activated in a death ligand-independent manner, by removing AK301 from medium and 

releasing the cells from mitotic arrest. We also demonstrate that this mitosis-to-apoptosis 

transition requires a reversible mitotic arrest by AK301, unlike other mitotic arrest agents that 

induce a more permanent mitotic arrest. Finally, we show that cancer cells treated with AK301 

arrest at a mitotic state that induced high levels of ATM activation and p53 stabilization relative 

to other mitotic arrest agents tested. The activation of p53 during mitosis culminates in an 

apoptotic response in cells following AK301 withdrawal.  We propose that AK301 represents a 

novel class of compounds that will be beneficial for understanding how pro-apoptotic signaling 

via ATM-p53 pathway can be activated during mitosis for efficient apoptosis in cancer cells. The 

pathways targeted by AK301 may ultimately find therapeutic applications. 

 

4.3. Materials and Methods 

4.3.1. Cell Culture 

HT29 and HCT116 colon cancer cell lines were obtained from the American Type 

Culture Collection (Manassas, VA). HT29 and HCT116 cell lines were cultured in McCoy’s 5A 

medium, with 10% fetal bovine serum, non-essential amino acids and antibiotic/antimycotic 

(Life Technologies, Guilford, CT). Immortalized primary colon cell lines YAMC and IMCE 
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were a gift of Dr. R Whitehead (Vanderbilt University, Nashville, TN). YAMC and IMCE cells 

were cultured in RPMI medium containing 5% fetal bovine serum, non-essential amino acids, 

antibiotic/antimycotic, insulin-transferrin-selenium (Life Technologies), and 5 units of murine 

gamma interferons. The cells were grown at 33°C. AK301 was synthesized from compounds 

obtained from the ChemBridge DIVERSetTM library (San Diego, CA). Colchicine and 

Vincristine, and BI 2536 were obtained from Sigma Aldrich (St. Louis, MO), Acros Organics 

(Pittsburgh, PA), and Selleck Chemicals (Houston, TX), respectively. Drug treatments were 

performed approximately 24 h after passage for 16 h, unless otherwise indicated. TNF was 

obtained from Pierce Protein Research Products (Rockford, IL). 

 

4.3.2. Immunofluorescence microscopy 

Cells cultured on coverslips were fixed with 4% paraformaldehyde at room temperature 

or 100% ice cold methanol at 4°C and then permeabilized with 0.5% Triton X-100 in PBS. Cells 

were blocked in 5% serum (in PBS) and then incubated with primary antibody (in 5% serum) on 

shaker for 1 h at room temperature against phosphohistone H3 Ser 28 (sc-12927, Santa Cruz 

Biotechnology, Santa Cruz, CA), β-tubulin (E7 monoclonal antibody, Developmental Studies 

Hybridoma Bank), or cleaved caspase-3 (Asp175, Cell Signaling). Appropriate secondary 

antibodies (Molecular Probes, Life Technologies or Jackson ImmunoResearch, West Grove, PA) 

were used for 45 min incubation. Nuclei were visualized using DAPI (5 μg/ml in PBS; DI306, 

Life Technologies). Coverslips were mounted on slides using ProLong Gold Antifade Reagent 

(Life Technologies). Images were acquired using Nikon A1R Confocal Microscope (version 

2.11, Nikon Instruments Inc.) and NIS-Elements Advanced Research Software (version 4.13.01, 

build 916, Nikon Instruments Inc.). Quantification of immunostaining was performed using 
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ImageJ image analysis software (http://rsb.info.nih.gov/ij) as previously described [88]. 

Following background subtraction and image stacking, both DAPI and immunofluorescence 

images were merged. Image brightness and contrast was modified with Adobe Photoshop 

software CC 2014 (Adobe Systems).  

 

4.3.3. Live cell imaging 

Cells were plated into 8-well chamber plates (NuncTM Lab-Tek®, Waltham, MA) and 

treated with compounds for 16 hrs. In the case of HT29 cells, drugs were replaced with 

SP600125 for 2 hrs, followed by fresh medium. The Andor iQ live cell imaging software 

(Oxford Instruments, Belfast, UK) with Clara Interline CCD or iXon EMCCD camera (Oxford 

Instruments) was used to image cells. Micro-Manager© (https://www.micro-manager.org) was 

used as acquisition controller. Images were processed and corrected using ImageJ image analysis 

software (http://rsb.info.nih.gov/ij). 

 

4.3.4. Flow cytometry and cell cycle analysis 

Cells were stained for γH2AX using the protocol described above for 

immunofluorescence staining. Briefly, cells were fixed with 4% PFA, permeabilized with 0.1% 

Triton X-100, and blocked with 5% donkey serum. Cells were then incubated with γH2AX 

antibody (sc-101696, Santa Cruz Biotechnology) followed by incubation with Alexa Fluor® 488 

secondary antibody (Life Technologies). Cells were then harvested using trypsin-EDTA for 15 

min at 37°C and washed once with PBS. Propidium iodide (30 µg/ml) was added to the cells 

prior to filtration through 35 µm cell strainer tubes. Cell were promptly analyzed by flow 

cytometry. 
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For cell cycle analyses, cells were analyzed for DNA content by ethanol fixation and 

staining with propidium iodide as previously described [89]. Cells were harvested using trypsin-

EDTA, centrifuged at 1000 X g for 10 min and resuspended in 500 μl of cold saline GM. Cells 

were washed once with 1X PBS and then fixed for at least 2 hrs at -20°C in 3X volumes of cold 

100% ethanol while vortexing. Cells were then pelleted and washed once with PBS containing 5 

mM EDTA. Pelleted cells were stained with 30 μg/ml propidium iodide (Molecular Probes, Life 

Technologies Corp.) and 0.3 mg/ml RNase A (Sigma-Aldrich, St. Louis, MO) in 500 μl PBS 

solution for 40 min in dark at RT. The stained cells were filtered through 35 μm cell strainer 

tubes (BD Biosciences, San Jose, CA). All flow cytometric analyses were performed on 

FACSCalibur (BD Biosciences) using Cell Quest software (BD Biosciences). The data were 

analyzed using FlowJo (v10, TreeStar Inc., Ashland, OR). 

 

4.3.5. Caspase-3 assay 

Caspase-3 activity was determined as previously described [145]. Cells were collected, 

centrifuged at full speed, and washed once with PBS. Pelleted cells were lysed by two rounds of 

freeze-thaw in lysis buffer containing 10 mM Tris-HCl (pH 7.5), 0.1 M NaCl, 1 mM EDTA, and 

0.01% Triton X-100 and centrifuged at 10,000 X g for 5 min. The assays were performed on 96 

well plate by mixing 50 μl of lysis supernatant with 50 μl of 2X reaction mix (10 mM PIPES pH 

7.4, 2 mM EDTA, 0.1% CHAPS, 10 mM DTT) containing 200 nM of the fluorogenic substrate 

Acetyl-Asp-Glu-Val-Asp-7-Amino-4-methylcoumarin (DEVD-AMC; Enzo Life Sciences). The 

fluorescence was quantified at the start of the reaction and after 30 min. Protein concentrations 

were determined using CBQCA Protein Quantitation Kit (Life Technologies). Caspase activity 
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was determined by dividing the change in fluorescence by total protein content of the reaction 

mixture.  

 

4.3.6. Western blot 

RIPA buffer was used for total protein extraction and NP-40 buffer was used for 

membrane protein extraction. 20 μg of protein was denatured under reducing conditions and 

separated on 10% polyacrylamide gels (Bio-Rad Laboratories, Hercules, CA) and transferred to 

nitrocellulose by voltage gradient transfer. The resulting blots were blocked with 5% (w/v) non-

fat dry milk in PBS + 0.1% (v/v) Tween-20. Specific proteins were detected with appropriate 

antibodies using SignalFireTM Elite ECL Reagent (Cell Signaling Technology). Immunoblotting 

antibodies were cleaved caspase-8 (18C8, Cell Signaling Technology), p53 (OP03, Calbiochem, 

Germany), p-p53, ATM (2873, Cell Signaling Technology), and p-ATM Ser1981 (13050 Cell 

Signaling Technology) 

 

5.3.6. Statistical analyses 

One-way analysis of variance (ANOVA) was used when comparing two groups with 

Tukey’s post hoc test. For more than two groups, two-way ANOVA was used with Bonferroni 

correct. Significance was calculated at an alpha of 0.05. 

 

4.4. Results 

4.4.1. AK301-arrested cells show increased caspase-3 activity 

To compare the mitotic arrest-inducing ability of AK301, we tested various 

pharmacological agents, including microtubule inhibitors (colchicine and vincristine), and a 
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PLK1 inhibitor (BI2536) for their ability to induce mitotic arrest. HCT116 colon cancer cells 

were treated with either 250 nM or 500 nM of each of these agents. Flow cytometric analysis of 

propidium iodide (PI)-stained cells was performed to assess the DNA content of the cells. All of 

the agents tested were able to induce over 80% of mitotic arrest (P < 0.0001) (Figure 4.1A). To 

examine the relationship between induced mitotic arrest and sensitivity, we tested these agents 

for their ability to induce capase-3 activation in HCT116 cells, using a DEVD-AMC fluorogenic 

substrate. All agents were tested at 500 nM. As shown in Figure 4.1B, of the four mitosis-

arresting agents, only AK301 (P < 0.0001) and BI2536 (P < 0.05) were able to induce significant 

levels of caspase-3 activity. These results demonstrate a close relationship between the phase of 

mitotic arrest and cell sensitivity. 

  

4.4.2. AK301 withdrawal enhances apoptotic response in HCT116 cells 

Mitotic inhibitors can bind reversibly or irreversibly to their target. To better understand 

the nature of AK301’s interaction with its proposed target, β-tubulin, we withdrew AK301 from 

arrested HCT116 cell culture and monitored their progression through the cell cycle for 24 hours 

post release. Flow cytometric analysis performed at 3, 6, 12 and 24 hours post AK301 

withdrawal showed the appearance of sub G1 population in the cells released from AK301 arrest 

as early as 3 hours after release (Figure 4.2B). However, cells arrested with AK301 showed little 

to no apoptosis during the 24 hour period (Figure 4.2A). These data demonstrate that AK301 

may bind reversibly to microtubules and that withdrawal of the drug enhances the sensitivity of 

HCT116 cells to apoptosis. 
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Figure 4.1. AK301 and BI2536 induce the highest levels of caspase-3 activation. 

(A) HCT116 cells were treated with the indicated concentrations of AK301, colchicine, 

vincristine (microtubule inhibitors), and BI2536 (PLK1 inhibitor) for 16 h. Cells were fixed and 

stained with propidium iodide (PI) and analyzed by flow cytometry. All four drugs induced 

significantly high levels of G2/M arrest at both drug concentrations (P < 0.0001). (B) HCT116 

cells were treated with 500 nM of each of the drug for 16 h. Cell lysates were prepared and tested 

for levels of caspase-3 activity using DEVD-AMC fluorogenic assay and protein concentration 

with CBQCA assay. AK301 (**P < 0.0001) and BI2536 (*P < 0.05) induced significantly higher 

levels of caspase-3 activation in HCT116 cells. 
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Figure 4.2. Release from AK301-induced mitotic arrest enhances apoptosis in HCT116 

cells. 

(A) HCT116 cells were treated with 500 nM of AK301 for 16 hrs. Subsequently, AK301 was (B) 

removed and the cells were allowed to grow in fresh medium for 3, 6, 12, and 24 hrs following 

AK301 withdrawal. For the arrested cells, AK301 was added to the medium. Cells were 

harvested at the indicated times post AK301 treatment. Consistent with Figure 1B, flow 

cytometric analysis of the DNA content of AK301-arrested cells showed significant increase in 

sub G1 population. However, removal of AK301 enhanced sub G1 population significantly at 

each of the indicated times post-withdrawal.  
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We compared the effect of AK301 withdrawal to that of colchicine, which forms a tight 

complex with β-tubulin. HCT116 cells treated with 500 nM of either AK301 or colchicine were 

analyzed at 6, 8, and 10 hours post drug withdrawal. As shown in Figure 4.3A, AK301-treated 

cells showed appreciably greater percentage of sub G1 population than cells treated with 

colchicine (Figure 4.3B). Colchicine-treated cells showed little to no sub G1 population. In 

addition, AK301-treated cells showed recovery from mitotic arrest into the interphase unlike 

colchicine-treated cells. These data suggest a reversibility of AK301 action in arresting cells in 

mitosis. 

 

4.4.3. Arrested cells exiting mitosis are more prone to apoptosis 

To determine the association between the reversibility of mitotic arrest and apoptosis, we 

analyzed colchicine, vincristine, and BI2536. HCT116 cells treated with these agents were 

subsequently allowed to exit mitosis for 8 hours prior to flow cytometric analysis of DNA 

content. Consistent with Figure 4.1A, all the agents tested induced high levels of mitotic arrest, 

as indicated by the G2/M population (Figure 4.4A). Cells released from AK301- and BI2536-

induced arrest showed a significant decrease in the G2/M population (P < 0.0001) (Figure 4A). 

Moreover, subsequent analysis of sub G1 population indicated a significant increase in AK301-

treated cells. BI2536, however, was not effective at sensitizing cells to apoptosis. Colchicine and 

vincristine did not show any significant increase in sub G1 population (Figure 4B). These data 

suggest that a reversible mitotic arrest of cancer cells may allow them to exit mitosis 

prematurely, resulting in apoptosis. 
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Figure 4.3. AK301 withdrawal induces significantly more apoptosis than that with 

colchicine withdrawal.  

HCT116 cells were treated with 500nM of either (A) AK301 or (B) colchicine for 16 hrs. Cells 

were allowed to grow in fresh medium for indicated times. Flow cytometric analysis of DNA 

content showed that both AK301 and colchicine arrested HCT116 cells in G2/M phase of the cell 

cycle. However, upon drug withdrawal, AK301 resulted in a significantly greater increase in sub 

G1 population than those arrested with colchicine at each of the indicated times. Moreover, 

AK301-treated cells showed a time-dependent increase in sub G1 population following drug 

withdrawal. 
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Figure 4.4. AK301-treated cells exiting mitosis following drug withdrawal undergo 

apoptosis. 

HCT116 cells treated with 500 nM of each of the indicated drug for 16 h. Cells continued to 

grow in AK301-containing medium or drug-free medium for 8 h. (A) Flow cytometric analysis 

of the DNA content showed that all compounds induced a G2/M arrest, consistent with Figure 

1B. Following release of the drugs, only AK301 treated cells showed a significant decrease in 

G2/M population (*P < 0.0001). (B) Analysis of the sub G1 population showed that only 

withdrawal of AK301 induced a significant increase in sub G1 population, but not other mitotic 

arrest compounds (*P < 0.0001). 
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4.4.4. AK301-treated cells show microtubule recovery after AK301 withdrawal 

To gain insight into AK301’s mechanism of action, we visualized differences in 

microtubule morphologies after treatment with AK301 and colchicine. HCT116 cells were 

allowed to exit mitosis after treatment with AK301 or colchicine. Arrested cells and post-drug 

withdrawal released cells were immunostained for β-tubulin and phospho-histone H3 (p-HH3), a 

chromosomal marker of mitosis. Consistent with the previous results, both AK301 and 

colchicine induced a mitotic arrest as indicated by an increase in the number of p-HH3 positive 

cells. Interestingly (data not shown), cells released from colchicine retained high mitotic index 

(condensed chromatin), in contrast to a low mitotic index in cells released from AK301-induced 

arrest (Figure 4.5B). 

Both the agents induced disassembly of microtubule networks as anticipated (Figure 

4.5A). Consistent with our previous findings, AK301 induced the least disruption of microtubule 

networks and exhibited the formation of multiple microtubule organizing centers (MTOCs). 

Colchicine-treated cells, however, showed a complete breakdown of microtubule networks. After 

drug withdrawal, AK301-treated cells showed recovery of microtubule networks, whereas 

colchicine-treated cells showed little to no recovery (Figure 4.5B). Together, these data indicate 

a more reversible mitotic arrest by AK301. We propose that this reversibility may play an 

important role in sensitizing colon cancer cells to apoptosis. 
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Figure 4.5. AK301 induces a more reversible mitotic arrest. 

(A) HCT116 cells treated with AK301 or colchicine were fixed, permeabilized, and 

immunostained for β-tubulin. Both AK301- and colchicine-treated cells disrupted the formation 

of microtubules. AK301 treatment resulted in the formation of multiple MTOCs. (B) Cells 

released from mitotic arrest induced by AK301 or colchicine were immunostained for phospho-

histone H3 Ser28 (green) and β-tubulin (red). Nuclei were counterstained with DAPI. 

Colchicine-treated cells show a higher proportion of cells stained with p-HH3 Ser28, whereas the 

proportion dropped after release from AK301-induced arrest. AK301-treated cells showed a 

normal bipolar assembly of microtubules after drug withdrawal, unlike colchicine. 
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4.4.5. Apc and p53 mutations enhance the sensitivity of HCT116 cells 

Apc, a crucial protein in Wnt signaling and microtubule growth, is lost in most colon 

cancers, including HCT116 cancer cells [195, 196]. To assess the effect of Apc mutation on 

AK301-induced apoptosis, Apc+/+ immortalized Young Adult Mouse Colonocytes (YAMCs) and 

Apc heterozygous (ApcMin/+) Immorto-Mouse Colonic Epithelial cells (IMCEs) were treated with 

500 nM of AK301 for 16 hours. Cells were allowed to exit mitosis in the absence of AK301 and 

cells were analyzed at 20, 30, and 40 hours post-release by flow cytometry as described above. 

As shown in Figure 4.6A, both cell lines showed an increase in sub G1 population, however, 

IMCEs showed a significantly higher sub G1 population over sub G1 in YAMCs at all sampling 

intervals. These data suggest that cells carrying microtubule-disruptive Apc mutations are more 

sensitive to the apoptotic inducing effects of AK301 compared to normal colon epithelial cells.  

One of the most important proteins in the apoptotic pathway is p53, which is mutated in 

50% of colon cancers [188]. To evaluate the role of p53 in AK301-induced apoptosis, we treated 

wild type (p53+/+) and p53 null (p53-/-) HCT116 colon cancer cells with AK301 and assessed the 

level of capase-3 activation using a DEVD-AMC fluorogenic assay. As shown in Figure 4.6B, 

wild type HCT116 cells treated with AK301 showed a significant increase in active caspase-3, 

consistent with previous experiments. Conversely, p53 null cells did not show a significant 

increase in caspase-3 activation after AK301 treatment. These data demonstrate that caspase-3 

activation and apoptosis progression in AK301-treated HCT116 colon cancer cells is p53 

dependent. 

To further evaluate the role of p53, we performed cell cycle analysis on both p53 wild 

type (p53+/+) and p53 null (p53-/-) HCT116 cells. Cells were treated with AK301 and 

subsequently released as described above, followed by flow cytometric analysis. Consistent with 
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previous results, the wild type cells were more sensitive than their p53 null counterparts. 

Moreover, wild type cells showed a significant increase in sub G1 population upon exit from 

AK301-induced arrest (P < 0.0001), in agreement with previous results. Conversely, no 

significant increase in sub G1 was observed between control p53 null cells and p53 null cells 

after AK301 withdrawal (Figure 4.6C). 
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Figure 4.6. Apoptotic inducing ability of AK301 is p53-dependent and enhances the 

sensitivity of Apc mutant IMCE cells for apoptosis. 

(A) Apc+/+ YAMCs and ApcMin/+ IMCE cells were treated with 500 nM of AK301 for 16 h, 

followed by a release from arrest for 40 h. Cells were harvested at the indicated times post-
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release and their DNA content was analyzed by flow cytometry for the appearance of sub G1 

population. AK301 induced significantly greater apoptosis in Apc mutant IMCE cells. The 

apoptosis effect was enhances in IMCE cells after AK301 withdrawal (**P < 0.0001). hpr: hours 

post release (B) p53+/+ and p53-/- HCT116 colon cancer cells were treated with AK301 and 

caspase-3 activity was assessed using DEVD-AMC assay. AK301 induced significantly higher 

activation of caspase-3 in p53+/+ cells compared to their p53-/- counterparts (**P < 0.0001). (C) 

p53+/+ and p53-/- HCT116 cells were treated with AK301, followed by release from mitotic 

arrest. Cells were analyzed by flow cytometry for sub G1 population. AK301 induced a 

significantly greater arrest in p53 wildtype cell compared to p53 null cells. The sub G1 

population of p53+/+ cells was significantly enhanced when the cells were allowed to exit mitosis 

(**P < 0.0001).  
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4.4.6. ATM-dependent p53 activation is required for mitotic exit, but not for γH2AX activation 

To determine whether γH2AX was activated in response to DNA damage in HCT116 

cells, we immunostained for γH2AX phosphorylation at Ser139 in cells arrested with AK301, 

colchicine, vincristine, or BI2536. Flow cytometric analysis was performed to determine the 

association between mitotic arrest state and γH2AX phosphorylation. AK301-treated cells 

showed the highest percentage γH2AX positive cells (P < 0.0001) compared to other mitotic 

inhibitors tested (P < 0.05), indicated by cells in the second quadrant (Q2) of the dot matrix plot 

(Figure A5A). Quantification of γH2AX+ cells is shown in Figure A5B. Moreover, only the 

AK301 mitosis-arrested cells demonstrated phosphorylation of H2AX. To determine if the 

γH2AX activation was p53-dependent, we tested p53+/+ and p53-/- HCT116 cells for activation of 

γH2AX in AK301-arrested cells and cells released from mitotic arrest. As shown in Figures 4.7A 

and 4.7B, both wild type and null cells exhibited γH2AX activation, suggesting a p53-

independent mode of activation. However, upon AK301 withdrawal, p53+/+ cells showed a 

significant decrease in γH2AX staining compared to their p53 null cell counterparts. Moreover, 

we compared γH2AX activation in cells treated with AK301 and other mitotic arrest inducing 

agents (colchicine, vincristine, and BI2536). As shown in Figures 4.7C and 4.7D, AK301-

treatment induced γH2AX activation in a significantly greater proportion of cells compared to 

other mitotic arrest agents. Together, these data suggest that γH2AX activation in AK301-

arrested cells is a p53-independent process, but induction of apoptosis following release from 

mitosis requires p53 activity. 

Stabilization of p53 and γH2AX is an ATM-dependent process [187]. To investigate the 

possible role of ATM in the activation of p53 and γH2AX, we prepared lysates of HCT116 cells 

treated with AK301 for 18 hrs and those from which drug was withdrawn for 4 and 6 hrs and 
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immunoblotted for p-p53 Ser15, MDM2, and ATM phosphorylation at Ser1981. As shown in 

Figure 4.7C, AK301-treated cells showed phosphorylation of ATM Ser1981. This was 

accompanied by phosphorylation of p53 Ser15 and activation of MDM2. Release of HCT116 

cells from AK301 enhanced the activity of ATM, p53, and MDM2. These data suggest that p53 

activation is ATM-dependent. Activation of ATM increases after treatment with AK301, but is 

further enhanced after release of AK301. 
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Figure 4.7. ATM-dependent stabilization of p53 in AK301-treated is enhanced after mitotic 

release. 

(A)  p53+/+ and p53-/- HCT116 cells were treated with 500 nM of AK301 for 16 h followed by 

drug withdrawal. Cells were fixed with PFA and stained for γH2AX and PI counterstain was 

used to stain DNA. Dot matrix plots (quadrant 2, Q2) show that AK301 induced γH2AX 
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regardless of p53 mutation status. Removal of AK301 significantly reduced γH2AX staining in 

p53 wildtype, but not p53 null cells. (B) Quantification of γH2AX staining in cells staining with 

PI (Q2) (*P < 0.0001). (C) γH2AX staining and flow cytometric analysis of p53+/+ HCT116 cells 

treated with the indicated mitotic arrest agents – AK301, colchicine, vincristine, and BI2536. 

Treated cells were stained as described above (D) Quantification of γH2AX positive cells in 

response to each of the treatments in (D) above. AK301-treated HCT116 cells showed a 

significantly greater proportion of cells with γH2AX activation (*P < 0.0001). (E) p53+/+ 

HCT116 cells were treated with AK301, followed by growth in fresh medium. Total protein was 

isolated by RIPA extraction after AK301 treatment and 4 and 6 hrs drug release from mitotic 

arrest. Immunoblot analysis shows phosphorylation of ATM at Ser1981, stabilization of p53 (p-

p53 Ser15) and stabilization of MDM2 after AK301 treatment. The phosphorylation of ATM and 

p53 as well as activation of MDM2 was greatly enhanced, in a time-dependent manner, after 

releasing cells from mitotic arrest. β-actin was used as a loading control. 
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4.5. Discussion 

We previously reported the identification of small molecule microtubule inhibitors that 

induced mitotic arrest in colon cancer cells and dramatically enhanced colon cancer cell death 

strictly in the presence of death ligands [145, 193]. Structure-activity relationship studies led to 

the identification of a more potent compound, AK301, with EC50 of 115 nM [193]. Moreover, 

we showed that these compounds reduced microtubule polymerization, unlike other microtubule 

inhibitors that completely abrogate microtubule polymerization [193]. The reduction in 

microtubule polymerization along with an increase in cell surface expression of TNFR1 led to 

apoptotic signaling in AK301-treated colon cancer cells. In this study, we show that AK301, in 

the absence of death ligands, is highly effective at inducing a mitosis-to-apoptosis transition 

following release from the mitotic arrest state. We also show that the activation of apoptosis is a 

p53-mediated process. Further, AK301 is able to induce the activation of ATM, which is 

necessary for p53 activation, ultimately resulting in a robust apoptotic response in cancer cells 

exiting mitosis (Figure 4.8). 

Mitotic checkpoints safeguard entry into and exit from mitosis [130]. Mutations in 

checkpoint kinases, such as those involved in the spindle assembly checkpoint (SAC) and DNA 

repair pathways, have been implicated in development of colon cancer [28, 40, 197-199]. Based 

on the in vitro microtubule disruptive activity of AK301, we anticipated that removal of AK301 

would restore bipolar spindle formation in arrested cells and that the cells would complete 

mitosis. Consistent with our previous studies [193], we showed that AK301 effectively arrested 

cells in mitosis at low nanomolar concentrations. Surprisingly, however, cells exiting mitosis 

after AK301 withdrawal were susceptible to apoptosis. Notably, release from AK301-induced 

mitotic arrest, but not from other mitotic inhibitors, resulted in apoptosis. These results suggest 
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that limited disruption of microtubules by AK301 allows the arrested cancer cells to reassemble 

microtubules and aberrantly exit mitosis. In addition, other labs have also shown that weakening 

of SAC and aberrant exit from mitosis results in effective apoptosis [179, 200-202]. Taken 

together, our findings suggest that cancer cells are vulnerable to mitotic slippage following 

AK301 withdrawal, which induces apoptosis in these cells. It would be of interest to determine 

whether these arrested cells complete mitosis and arrest at a post-mitotic checkpoint following 

drug withdrawal or they simply slip out of mitosis and undergo cell death pending activation of 

apoptotic signaling. Moreover, how these cells transition from an aberrant mitosis to apoptosis 

needs to be further investigated. 

APC mutations are frequently found in colon cancers and aid in tumor progression [195, 

203, 204]. It is thought to be one of the first genes mutated in colon carcinogenesis [205, 206], 

and its mutation leads to an increase in Wnt signaling [207, 208]. APC is also known to regulate 

spindle assembly during mitosis by stabilizing microtubule plus (growth) ends [195, 208]. 

Further, APC binds to and recruits end-binding protein 1 (EB1) to microtubule plus ends for 

stability [208], and is also involved in the activation of SAC by direct interaction with BUB1 and 

BUBR1 [209]. C-terminal truncating mutations of APC, most commonly found in colon cancers 

act in a dominant negative fashion to inhibit the function of wildtype APC protein [195, 204, 

210]. Since AK301 acts to reduce the polymerization of microtubules, we anticipated that 

AK301 withdrawal would selectively induce apoptosis in an Apc mutant mouse colonocyte cell 

line (IMCE). We found that ApcMin/+ IMCEs were more sensitive to AK301 treatment. This is 

likely due to the additive effect of microtubule disruption by AK301 in an Apc mutant cell line. 

In addition, exit from mitosis after AK301 withdrawal triggered apoptosis in Apc heterozygous 

IMCE cells, higher than that in Apc wildtype YAMCs. Note that unlike HCT116 cells, Apc 
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mutant IMCE cells lack a robust SAC, thus making it easier for arrested cells to aberrantly exit 

mitosis upon drug withdrawal. These data not only reinforce the requirement of mitotic slippage 

for an effective apoptotic response, but also demonstrate the specificity of AK301 in targeting 

APC mutant cells. 
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Figure 4.8. Proposed model for AK301’s mechanism of action. 

Treatment of cancer cells with AK301 results in a mitotic arrest with multiple MTOCs. AK301 

induces high levels of activated ATM, which stabilizes p53. Releasing cells from mitotic arrest 

by removal of AK301 induces apoptosis in cells via the p53 pathway.   
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Although our results and other studies have shown that p53 is not required for the 

activation of SAC and mitotic arrest [185, 211], it is required for activation of apoptosis in cells 

exiting mitosis [182, 212]. However, p53 localizes to the centrosomes during mitosis and 

displaced upon spindle damage [213, 214]. Considering the localization of p53 during mitosis 

and its role as a tumor suppressor, it is conceivable that p53 is activated in response to mitotic 

damage. In fact, the activity of p53 might act as a secondary fail safe mechanism to SAC during 

mitosis. In turn, the activation of p53 can result in apoptosis or a more permanent exit from cell 

division post-mitosis. p53 can be activated by several different kinases during mitosis [186, 215]. 

In contrast to a recent study that showed the requirement of both γH2AX and p53 activation for 

cell cycle arrest [216], our results suggested otherwise; AK301-induction of mitotic arrest was 

observed to be p53- and γH2AX-independent. However, our results indicated that p53 activation 

is required for an effective mitosis-to-apoptosis transition after releasing cells from mitosis. 

γH2AX activation, in this case, may be induced by the activation of a kinase, ataxia 

telangiectasia mutated (ATM), in a DNA damage-independent manner. The role γH2AX 

activation, if any, during or after mitotic arrest, however, is unclear. 

To address the DNA damage-independent activation of p53 during mitosis, we 

investigated the possible involvement of ATM. Immunoblot analysis showed the 

phosphorylation of ATM at Ser1981, suggesting a DNA damage-independent mode of ATM 

activation, resulting in the activation of p53. ATM activation, in turn, can be attributed to defects 

in microtubule function. Studies have shown that ATM is activated by default (by 

phosphorylation at Ser1981) in cells undergoing mitosis and localizes to the centrosomes [217]. 

Activation of SAC displaces ATM, which localizes throughout the cytoplasm and activates p53 

[187]. We propose that defects in mitotic spindle assembly, induced by AK301, result in high 
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levels of ATM-dependent p53 activation, which ultimately leads to apoptosis in cells that exiting 

mitosis [218, 219]. 

 Microtubule disruptors have been used for decades as the clinical treatment of some 

cancers [220]. Vincristine and its derivatives are used in the treatment of cancers, such as B-cell 

lymphoma [221]. These drugs are successful at diminishing tumor size but their general toxicity 

results in undesirable side effects for patients. Therefore, there is an urgent need to identify 

therapeutic compounds that specifically target cancer cells. In this study, we illuminated the 

mechanism of action of AK301 and provide a paradigm for the activation of apoptosis in both 

cancer cells as well as non-transformed APC mutant colon cancer cells. However, further 

investigation is required to identify targets of AK301 and explore in detail the ability of AK301 

in inducing mitotic arrest and efficient apoptosis following release from mitosis. Unlike other 

microtubule inhibitors, AK301 may target the microtubule defects associated with an APC 

mutation more directly. Understanding the vulnerabilities of cancer cells may ultimately help in 

the development of therapeutics that effectively and specifically target these cells for 

elimination. 
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CHAPTER 5 

Targeting APC-/- mutant cells for apoptosis via microtubule disruption by AK301 

 

5.1. Abstract 

Adenomatous polyposis coli (APC) is a tumor suppressor which is mutated in a majority 

of colorectal cancers. The role of APC in Wnt signaling is well understood. However, the effect 

of APC mutations on microtubule polymerization and stability are less well studied. Using Apc+/+ 

and ApcMin/+ mouse colonocyte cell lines, we show that APC heterozygous mutant cells exhibit 

microtubule defects, especially during mitosis. In addition, we show that Apc mutant cells are 

sensitive to a small molecule microtubule disrupting agent, AK301, we previously identified. In 

the presence of AK301, Apc mutant colonocytes display microtubule defects and form multiple 

microtubule organizing centers (MTOCs). Further, we show that Apc mutant colonocytes 

undergo apoptosis upon AK301 treatment. Expression of APC C-terminus truncated protein 

(APCΔC) in human HEK293 cells showed similar defects in microtubule networks and bipolar 

spindle formation, which were aggravated by AK301 treatment. Understanding the mechanisms 

by which cells cope with APC-associated microtubule defects may help identify novel targets 

and aid in the development of specific and potent chemotherapeutic and chemopreventive agents. 

 

5.2. Introduction 

Colon cancer begins in a single cell with a genetic mutation that gives that cell a growth 

advantage [206]. From there, a series of mutations in tumor suppressor genes and oncogenes 

cause a colon cancer to develop and progress [222, 223]. Genes in the Wnt signaling pathway are 

critical for the initiation and progression of colon cancer [224-226]. According to Vogelstein’s 
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model for the development of colorectal cancer, the initial genetic alteration in most colon 

cancers is the loss of function of the tumor suppressor gene, adenomatous polyposis coli (APC) 

[206]; APC mutations are found in 80-90 percent of colon cancers [40, 203]. APC is involved in 

normal intestinal development and influences a variety of cellular processes [226, 227]. Loss of 

APC function results in intestinal neoplasia in both mice and humans [228]. Mutations in APC 

deregulate Wnt signaling and lead to stabilization and nuclear translocation of β-catenin, which 

results in aberrant transcriptional activation of TCF/LEF target genes [207, 229]. However, APC 

also plays a role in microtubule polymerization and stabilization, and microtubule anchoring to 

cellular attachment sites to establish cell polarity [195, 230-232]. The effect of APC mutations on 

microtubule dynamics and assembly has been proposed to participate in cell transformation, 

including the acquisition of the chromosomal instability (CIN) phenotype that can drive cancer 

progression [233-235]. Although the cancer promoting effects of an APC mutation are well 

established, there is some evidence that this defect can render mutant cells sensitive to specific 

treatments [236]. Here, we focus on the potential effectiveness of targeting the microtubule and 

mitotic defects associated with an APC mutation.   

Proper spindle formation during mitosis is crucial to ensure proper alignment and 

segregation of chromosomes [168]. Microtubules are highly dynamic at their plus ends; their 

stability at the plus ends is largely regulated by EB1 and APC [169, 237, 238]. Binding of APC 

to the carboxy-terminus of EB1 enhances the ability of EB1 to bind polymerized microtubules, 

suggesting that APC may help to stabilize microtubules, and therefore, cell polarity 

establishment, and chromosome capture and segregation during mitosis [230, 239, 240]. 

Moreover, APC also binds directly to the plus ends of growing microtubules and has been found 

to be localized at the kinetochore-microtubule complexes [230, 241]. Recent studies indicate that 
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expression of truncated forms of APC dominantly compromises microtubule dynamics [242] and 

kinetochore-microtubule attachments [208, 243], indicating that the influence of APC mutation 

on cancer progression occurs even before both alleles are mutated. Aberrant mitosis and failed 

cytokinesis have been observed in normal tissue of ApcMin/+ mice [244-246]. Although colon 

cancer cells cope with the loss of APC function, it is unclear how they compensate for this loss. 

However, loss of APC function may be an “Achilles heel” of a mutated cell; we will explore this 

possibility in this chapter. 

In this study, we demonstrate that ApcMin/+ heterozygous cells with truncated APC have 

defects in their microtubule networks. Moreover, ApcMin/+ cells were found to be sensitive to 

microtubule disruption by a piperazine-based agent, 1-(3-chlorophenyl)-4-(2-

ethoxybenzoyl)piperazine, referred to as AK301, previously identified for its ability to induce 

mitotic arrest and apoptosis in colon cancer cells. Expression of the C-terminus truncated APC 

(APCΔC) in HEK293 cells showed effects on microtubule formation similar to those observed 

with ApcMin/+ IMCE cells. Further, aurora kinase A was found to be mislocalized in APC mutant 

cells was observed to be particularly sensitive to AK301 treatment, consistent with a more severe 

disruption in the structure and/or composition of the spindle assembly apparatus. Understanding 

how APC mutations affect colonic epithelial cells could provide insight into early cellular 

changes in colon cancer develop, which may prove useful in colon cancer prevention. 

 

5.3. Materials and Methods 

5.3.1. Cell culture, transfections, and preparation of stable cell lines 

YAMC and IMCE cell lines were a gift from Dr. Robert Whitehead (Vanderbilt 

University, Nashville, TN) [247]. YAMC and IMCE cells were cultured in RPMI medium 
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containing 5% fetal bovine serum, non-essential amino acids, antibiotic/antimycotic, insulin-

transferrin-selenium (Life Technologies), and 5 units of murine gamma interferons. The cells 

were grown at 33°C in 5% CO2. HEK293 cells were a gift from Dr. Antonio Garmendia 

(University of Connecticut, Storrs, CT). HEK cells were cultured in DMEM, containing 10% 

fetal bovine serum, non-essential amino acids, and antibiotic/antimycotic. The cells were grown 

at 37°C in 5% CO2. Cells were transfected with either pEGFP-C1 or APC-containing pEGFP-C1 

plasmid using Lipofectamine® 3000 reagent (Life Technologies) following manufacturer’s 

instructions [248]. Briefly, cells were placed in reduced serum OptiMEM. 1 µl Lipofectamine 

3000 reagent was diluted in 25 µl of OptiMEM per well for a 24-well plate. 1 µg of plasmid per 

well was diluted in 25 µl of OptiMEM and 1 µl of P3000 reagent per well was added. Diluted 

Lipofectamine and plasmids were mixed and allowed to sit for 20 min before adding to cells. 

Cells were incubated overnight at 37°C. For preparation of stable cell lines, transfected cells 

were grown in the presence 400 µg/ml of geneticin for two weeks. Remaining cells were plated 

in a 100 mm dish at low density and colonies were allowed to form. Single colonies expressing 

GFP were transferred to each well of a 24-well plate in the absence of geneticin. Extracts from 

these cells were tested for the presence of APCΔC-GFP by western blot. AK301 was obtained 

from ChemBridge DIVERSetTM library (San Diego, CA). Drug treatments were performed 

approximately 24 h after passage for 16 h, unless indicated otherwise. TNF was obtained from 

Pierce Protein Research Products (Rockford, NJ). 

  

5.3.2. Generation of constructs expressing GFP-APCΔC 

End-sequenced human APC cDNA clones were obtained from TransOmic (TCHS1003, 

Huntsville, AL). A pair of primers were designed with a mutant base (T to A) in the reverse 
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primer. Primers 5’-GGGG CTCGAGATGGCTGCAGCTTCATATGAT-3’ (forward) and 5’- 

GGGGGTCGACCTAACTTCTGTC TTTCTCAGA-3’ (reverse), which contain non-

homologous sequences at each 5’ end that were used to add SalI and XhoI sites of pEFGP-C1 

plasmid. The primers were used to amplify the short APC fragment using a high fidelity Pfu 

polymerase. Amplification was confirmed by agarose gel electrophoresis, and PCR products 

were purified with a QIAquick® PCR Purification Kit (28104, Qiagen, Valencia, CA). Purified 

samples were sequenced using ABI Prism Big Dye Terminator Cycle Sequencing (Perking-

Elmer Applied Biosystems, Carlsbad, CA). The resulting APC fragment was ligated to pEGFP-

C1 plasmid by Gibson Assembly Kit (New England Biolabs, Ipswich, MA). The plasmid DNA 

was amplified in the E. coli strain DH5α (Life Techologies) and extracted using QIAGEN® 

Plasmid Midi Kit (12143, Qiagen) following manufacturer’s instructions. Purified plasmid was 

resuspended in nuclease-free water and checked by agarose gel electrophoresis and OD readings 

at 260 and 280 nm. The final plasmid was sequenced as described above to ensure no mutations 

were introduced by PCR amplification. 

 

5.3.3. Immunoflorescence microscopy 

Cells cultured on coverslips were fixed with 4% paraformaldehyde at room temperature 

or 100% ice cold methanol at 4°C and then permeabilized with 0.5% Triton X-100 in PBS. Cells 

were blocked in 5% serum (in PBS) and then incubated with primary antibody (in 5% serum) on 

shaker for 1 h at room temperature against β-tubulin (E7 monoclonal antibody, Developmental 

Studies Hybridoma Bank) or aurora kinase A (610938, BD Biosciences, San Jose, CA). 

Appropriate secondary antibodies (Molecular Probes, Life Technologies, Guilford, CT or 

Jackson ImmunoResearch, West Grove, PA) were used for 45 min incubation. Nuclei were 
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visualized using DAPI (5 μg/ml in PBS; DI306, Life Technologies). Coverslips were mounted 

on slides using ProLong Gold Antifade Reagent (Life Technologies). Images were acquired 

using Nikon A1R Confocal Microscope (version 2.11, Nikon Instruments Inc.) and NIS-

Elements Advanced Research Software (version 4.13.01, build 916, Nikon Instruments Inc.). 

Quantification of immunostaining was performed using ImageJ image analysis software 

(http://rsb.info.nih.gov/ij) as previously described [88]. Following background subtraction and 

image stacking, both DAPI and immunofluorescence images were merged. Image brightness and 

contrast was modified with Adobe Photoshop software CC 2014 (Adobe Systems). 

 

5.3.4. Flow cytometry and cell cycle analysis 

Cells were stained for γH2AX using the protocol described above for 

immunofluorescence staining. Briefly, cells were fixed with 4% PFA, permeabilized with 0.1% 

Triton X-100, and blocked with 5% donkey serum. Cells were then incubated with γH2AX 

antibody (sc-101696, Santa Cruz Biotechnology) followed by incubation with Alexa Fluor® 488 

secondary antibody (Life Technologies). Cells were then harvested using trypsin-EDTA for 15 

min at 37°C and washed once with PBS. Propidium iodide (30 µg/ml) was added to the cells 

prior to filtration through 35 µm cell strainer tubes. Cell were promptly analyzed by flow 

cytometry. 

For cell cycle analyses, cells were analyzed for DNA content by ethanol fixation and 

staining with propidium iodide as previously described. Cells were harvested using trypsin-

EDTA, centrifuged at 1000 X g for 10 min and resuspended in 500 μl of cold saline GM. Cells 

were washed once with 1X PBS and then fixed for at least 2 hrs at -20°C in 3X volumes of cold 

100% ethanol while vortexing. Cells were then pelleted and washed once with PBS containing 5 
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mM EDTA. Pelleted cells were stained with 30 μg/ml propidium iodide (Molecular Probes, Life 

Technologies Corp.) and 0.3 mg/ml RNase A (Sigma-Aldrich, St. Louis, MO) in 500 μl PBS 

solution for 40 min in dark at RT [89]. The stained cells were filtered through 35 μm cell strainer 

tubes (BD Biosciences, San Jose, CA). All flow cytometric analyses were performed on 

FACSCalibur (BD Biosciences) using Cell Quest software (BD Biosciences). The data were 

analyzed using FlowJo (v 10, TreeStar Inc., Ashland, OR). 

 

5.3.5. Caspase-3 assay 

Caspase-3 activity was determined as previously described [145]. Cells were collected, 

centrifuged at full speed, and washed once with PBS. Pelleted cells were lysed by two rounds of 

freeze-thaw in lysis buffer containing 10 mM Tris-HCl (pH 7.5), 0.1 M NaCl, 1 mM EDTA, and 

0.01% Triton X-100 and centrifuged at 10,000 X g for 5 min. The assays were performed on 96 

well plate by mixing 50 μl of lysis supernatant with 50 μl of 2X reaction mix (10 mM PIPES pH 

7.4, 2 mM EDTA, 0.1% CHAPS, 10 mM DTT) containing 200 nM of the fluorogenic substrate 

Acetyl- Asp-Glu-Val-Asp-7-Amino-4-methylcoumarin (DEVD-AMC; Enzo Life Sciences). The 

fluorescence was quantified at the start of the reaction and after 30 min. Protein concentrations 

were determined using CBQCA Protein Quantitation Kit (Life Technologies). Caspase activity 

was determined by dividing the change in fluorescence by total protein content of the reaction 

mixture. 
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5.3.6. Statistical analyses 

One-way analysis of variance (ANOVA) was used when comparing two groups with 

Tukey’s post hoc test. For more than two groups, two-way ANOVA was used with Bonferroni 

correct. Significance was calculated at an alpha of 0.05. 

 

5.4. Results 

5.4.1. ApcMin/+ IMCE cells exhibit microtubule defects 

Previous studies have shown localization of APC at the growing (plus) ends of 

microtubules and that APC mutations reduce the rate of microtubule polymerization in vitro 

[208, 242, 244]. We sought to characterize overall defects in microtubule morphology of 

ApcMin/+ heterozygous cells. We used a set of conditionally immortal cell lines derived from 

C57/BL6 mice, Apc+/+ Young Adult Mouse Colonocytes (YAMCs) and ApcMin/+ Immorto-Mouse 

Colonic Epithelial cells (IMCEs), developed by Dr. Robert Whitehead (Vanderbilt University, 

Nashville, TN). We immunostained YAMCs and IMCEs for β-tubulin to identify changes in 

microtubule structures. As shown in Figure 5.1A, Apc heterozygote IMCE cells show overall 

aberrations in microtubule networks. Generally, cells are more elongated and display 

microtubules network that are concentrated towards the periphery of the cell. Additionally, some 

cells lack partial or complete microtubule networks. Microtubules are highly dynamic during 

mitosis and require precise spindle assembly for proper chromosomal division. Interestingly, no 

gross microtubule abnormalities were observed in mitotic cells with regards to their mitotic 

spindles. 
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Figure 5.1. AK301 disrupts microtubule networks in both Apc+/+ YAMCs and ApcMin/+ 

IMCE cells. 

(A) Mouse colonocyte cell lines YAMCs and IMCEs were fixed, permeabilized, and 

immunostained for β-tubulin (red). Nuclei were counterstained with DAPI (blue). In general, Apc 

mutant IMCE cells exhibited spindle shape compared to a more rounded cell shape in Apc 

wildtype YAMCs (arrowheads). Moreover, IMCE cells showed disruption or lack or microtubule 

networks. (B) β-tubulin of AK301-treated YAMC and IMCE cells showed increased disruption 

of microtubule networks; cells exhibited peripheral staining for β-tubulin and mitotic cells lacked 

microtubule spindle assembly (arrowheads). 
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5.4.2. Apc mutant IMCE cells show multiple microtubule organizing centers (MTOCs) 

following AK301 treatment 

To determine if AK301would alter microtubule networks in YAMCs and IMCE cells, we 

stained treated cells with AK301 and immunostained them for β-tubulin. As shown in Figure 

5.1B, AK301 disrupted microtubule networks in both YAMCs and IMCE cells. Non-mitotic 

cells showed microtubule networks clustered at the periphery of the cells; mitotic cells showed 

peripheral microtubule networks, but no spindle assembly. Moreover, spindle-shaped IMCE cells 

appeared more circular in shape with peripheral microtubule staining. 

Previously, we showed that AK301-treated colon cancer cells showed multiple MTOCs. 

To determine if there were difference in microtubule organizing centers between Apc normal and 

Apc mutant cells, we treated YAMCs and IMCE cells with 100 nM of AK301 and stained with a 

centrosomal marker, aurora kinase A. Untreated cell mitotic YAMCs and IMCEs showed normal 

bipolar localization of aurora kinase A (Figure 5.2A). Treatment of Apc normal YAMCs showed 

aurora kinase A deposition at two foci. This localization is consistent with aurora kinase A 

association at the centrosome, where it is normally localized in mitotic cells. (Figure 5.2B, left 

panel). However, AK301 treatment of Apc mutant IMCE cells showed the formation of multiple 

diffuse foci for aurora kinase A (Figure 5.2B, right panel). The emergence of multipolar aurora 

kinase A centers in IMCE cells suggests that Apc mutant cells are more sensitive to the 

centrosome disruption or centrosome assembly. 
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Figure 5.2. AK301 induces the formation of multiple aurora kinase A foci in Apc mutant 

IMCE cells. 

(A) YAMCs and IMCE cells were immunostained for aurora kinase A (green). Nuclei were 

counterstained with DAPI (blue). Untreated YAMCs and IMCE cells show a bipolar localization 

of aurora kinase A in mitotic cells (cells with condensed chromosome morphology). (B) Aurora 

kinase A immunostaining of AK301-treated YAMCs and IMCE cells shows diffused and 

unsegregated localization of aurora kinase A in mitotic cells of both YAMCs and IMCE cells. 

Moreover, AK301 treatment of IMCE cells induced the formation of multiple diffused aurora 

kinase A foci. Inset shows a higher magnification of one representative IMCE cell treated with 

AK301. 
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5.4.3. ApcMin/+ IMCE cells are sensitive to AK301 treatment and undergo apoptosis in the 

presence of TNF 

To assess the sensitivity of Apc-mutant cells to a microtubule disrupting agent, we treated 

YAMC and IMCE cells with 200 nM and 400 nM of a novel and potent microtubule inhibitor, 

AK301, previously identified in our laboratory. Although AK301 induced caspase-3 activation in 

both Apc normal and Apc mutant cells, active caspase-3 was found to be about four times higher 

in Apc mutant IMCE cells compared to YAMCs (Figure 5.3A). To confirm that the cells were 

undergoing apoptosis, we perfomed Annexin V staining of YAMCs and IMCEs treated with 

AK301. As shown in Figure 5.3B, IMCE cells treated with AK301 showed increased Annexin V 

staining, suggesting that Apc mutant cells treated with AK301 are more susceptible to apoptosis, 

but not Apc normal cells. Previously, we provided evidence for the reversibility of AK301-

induced mitotic arrest and showed that cells exiting mitosis aberrantly underwent apoptosis more 

effectively. We hypothesized that AK301 would induce similar increase in apoptosis in IMCE 

cells compared to YAMC cells following AK301 removal. We treated the cells with AK301 and 

followed sub G1 population at 20, 30, and 40 hrs post mitotic release. Consistent with our results 

above, AK301 induced significantly greater apoptosis in IMCE cells compared to YAMCs 

(Figure 5.3C). More importantly, release from AK301 enhanced apoptosis in both YAMCs and 

IMCE cells, but the increase was significantly greater in IMCE cells at each time interval post 

mitotic release. 

Studies from our laboratory have demonstrated that pharmacological disruption of the 

rate of microtubule polymerization can result in enhanced death receptor trafficking, primarily 

TNFR1, to the cell surface [145, 193]. To determine the sensitivity of ApcMin/+ IMCE cells to 

TNF, we treated YAMC and IMCE cells with 50 ng/ml of TNF for 10 hrs and 20 hrs and 



135 

determined the levels of active caspase-3. As shown in Figure 5.3D, Apc-mutant IMCE showed 

significant activation of caspase-3 after 10 h and 20 h of treatment compared to YAMCs, 

suggesting the enhanced sensitivity of Apc-mutant cells to TNF. Interestingly, Apc wildtype 

YAMC cells showed a significant decline in active caspase-3 levels, suggesting a protective 

effect of TNF on these cells. Consistent with the role of TNF in inducing cell survival and cell 

death, these data suggest cell-specific dual function of TNF signaling – a protective function for 

normal cells and as an inducer of apoptosis for mutant cells. Together, these data indicate that 

Apc mutant cells exhibit morphological differences at the cellular level that can be targeted for 

elimination of mutant cells. 
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Figure 5.3. AK301 enhances the sensitivity of Apc mutant IMCE cells during mitosis and 

following mitotic release. 

(A) YAMCs and IMCE cells were treated with 200 and 400 nM of AK301 for 16 h. Cell lysates 

were prepared and tested for active caspase-3 by DEVD-AMC fluorogenic assay. AK301 

induced significantly high levels of caspase-3 activation in IMCE cells at both concentrations 

(*P < 0.0001). (B) Annexin V staining of YAMCs and IMCE cells showed a higher proportion 

of AK301-treated IMCE cells staining positive for Annexin V on the cell surface, indicating that 

IMCE cells are undergoing apoptosis in response to AK301 treatment. (C) YAMCs and IMCE 

cells were treated with AK301. Following treatment, AK301 was removed and cells were 

released from mitotic arrest. Cells were harvested at the indicated times and their DNA content 

was analyzed by flow cytometry. Analysis of the sub G1 population showed that release from 

AK301-induced mitotic arrest resulted in significantly greater sub G1 population in IMCE cells 

compared to their YAMC counterparts (*P < 0.0001). (D) Apc wildtype YAMCs and Apc 

mutant IMCE cells were treated with 50 ng/ml of TNF for 10 or 20 hrs. Cell lysates were 

prepared and analyzed for caspase-3 activation by DEVD-AMC assay. TNF induced 
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significantly higher caspase-3 activation in IMCE cells compared to untreated control cells (*P < 

0.0001). Interestingly, 20 hrs of TNF treatment showed a reduction in caspase-3 activation in 

YAMCs (*P < 0.0001), suggesting a protective role of TNF in wildtype cells. 
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5.4.4. Overexpression of C-terminus truncated APC and treatment with AK301 induces multiple 

MTOCs in HEK293 cells 

To assess if overexpression of the truncated APC would have similar effects on MTOCs 

to that in IMCE cells, we transiently transfected HEK293 cells with a truncated human APC gene 

(truncated at the same site as the Min mutant). This APC was fused to the 3’ end of Gfp in a 

pEFGP-C1 vector, under the control of CMV promoter. The resulting APCΔC protein was fused 

to GFP, which was used as a marker for screening cells with APCΔC. Figure 5.4 shows a 

schematic of the methodology used to generate APCΔC-GFP fusion protein. Using our 

transfection protocol (See Section 5.3.1), we obtained a transfection efficiency greater than 85 

percent (Figure A6A). We prepared whole protein extract from both GFP and APCΔC-GPF 

expressing cells and immunoblotted for the N-terminus of APC to confirm the expression of 

APC-GFP in HEK293 cells (Figure A6B). Immunostaining for aurora kinase A showed results 

similar to those obtained with YAMC and IMCE cells (Figure 5.4B). Untreated APCΔC-GFP 

cells showed diffused, bipolar localization of aurora kinase A; treatment with AK301 resulted in 

the formation of multiple, diffused aurora kinase A foci. Further, consistent with the 

YAMC/IMCE data, APCΔC-GFP expressing HEK293 cells are elongated with spindle-shaped 

microtubule networks. AK301 treatment disrupts the microtubule networks in both GFP and 

APCΔC-GFP cells (Figure 5.4C). These data, together with YAMC/IMCE data, suggest that C-

terminus truncating mutation of APC can affect aurora kinase A deposition and that treatment of 

APC mutant cells with AK301 results in aberrations in spindle assembly during mitosis. 
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Figure 5.4. AK301 induces the formation of multiple aurora kinase A foci in HEK293 cells 

overexpressing C-terminus truncated APC (APCΔC) 

(A) Schematic of the generation of GFP-tagged C-terminus truncated APC and generation of 

stable cell lines. Mutations were introduced in full length human APC gene by PCR and 
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confirmed by agarose gel electrophoresis and capillary electrophoresis. The truncated APC 

fragment was ligated into pEGFP-C1 vector at the 5’-end of Gfp. Cells were transfected using 

Lipofectamine 3000® reagent and selected for geneticin resistance. Cells were screened based on 

the GFP expression. GFP and APCΔC-GFP expressing HEK293 cells were treated with 100 nM 

of AK301 and immunostained for (B) aurora kinase A and (C) β-tubulin. (B) Untreated cells 

show bipolar localization of aurora kinase A. However, treatment with AK301 resulted in 

diffused multiple aurora kinase A foci (arrowheads). (C) Similar to Apc mutant IMCE cells, 

APCΔC-GFP expressing HEK293 cells exhibited spindle cell shape compared to GFP expressing 

HEK293 cells. Treatment with AK301 resulted in disruption of microtubule networks with a 

more peripheral tubulin staining. Moreover, microtubule disruption in APCΔC-GFP resulted in a 

more round shape, consistent with AK301-treatmetn of IMCE cells.  
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5.4.5. AK301 enhances apoptosis in cells with truncated APC 

To determine if overexpression of truncated APC conferred growth advantage in 

HEK293 cells, we followed the growth of transiently transfected HEK293 cells over 72 h. Cells 

were harvested and analyzed by flow cytometry. As shown in Figure 5.5A, APCΔC-GFP cells 

were significantly more sensitive to apoptosis after transfection, which was enhanced by up to 3-

fold by 24 hours post transfection. However, the apoptosis in truncated APC-expressing cells 

decreased over time with about 5 percent apoptotic events by 72 h. 

To assess the effect of AK301 treatment on truncated APC-expressing HEK293 cells, we 

treated transiently transfected HEK293 GFP and APCΔC-GFP cells with increasing 

concentrations of AK301 and analyzed the appearance of sub-diploid population by flow 

cytometry. AK301 induced a mitotic arrest in both cells, and a modest, but significantly greater 

arrest in APCΔC-GFP cells (data not shown). More importantly, AK301 significantly enhanced 

apoptosis in APCΔC-GFP, but not GFP expressing cells (Figure 5.5B). Moreover, the apoptotic 

response of APCΔC-GPF cells followed a dose response with an EC50 of about 45.2 nM with a 

95% confidence interval of 37.9 nM and 53.9 nM. Together with YAMC/IMCE data, these 

results indicate the APC mutant cells are sensitive to AK301-induced microtubule disruption 

readily undergo apoptosis. 
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Figure 5.5. AK301 enhances apoptosis in APCΔC-GFP expressing HEK293 cells in a dose-

dependent manner. 

(A) HEK293 cells were transiently transfected with APCΔC-GFP and GFP containing plasmids 

for 24 hrs. Cell were transferred to fresh medium and cell growth was followed for 72 hrs. Cells 

were harvested and stained with PI. Flow cytometric analysis of the sub G1 population showed 

significantly greater apoptosis in AK301-treated APCΔC-GFP cells (*P < 0.0001). (B) 

Representative dose-response curves of sub G1 population with increasing concentrations of 
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AK301. Significant sub G1 proportions were observed in APCΔC-GFP expressing HEK293 cells 

at all concentrations of AK301 (*P < 0.0001). EC50 of APCΔC-GFP expressing HEK293 cells 

was determined to ≈ 45 nM. 
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5.5. Discussion 

Mutations in APC are found in a majority of colon cancers and are considered to be the 

first mutations in colon tumorigenesis [203, 206]. Loss-of-function mutations in APC trigger a 

chain of molecular alterations that lead to colon tumorigenesis. We previously identified a class 

of small molecules that induced mitotic arrest in colon cancer cells and sensitized these cells to 

apoptosis by increasing the cell surface expression of death receptors [145, 193]. AK301 was the 

most potent compound identified in this class. In this study, we report that AK301 sensitizes 

untransformed APC mutant cells to apoptosis. Our data demonstrate that APC mutations, leading 

to reduced microtubule polymerization, renders a cell sensitive to spontaneous apoptosis or to 

death ligands, such as TNF. We further show that APC mutant cells are also sensitive to AK301-

induced microtubule disruption with an EC50 of ≈ 45 nM. Consistent with our previous studies, 

our results indicate that declustering of centrosomes may lead to an enhanced apoptotic response 

in mutant cells. To the best of our knowledge, our study is the first to describe an association 

between APC mutation status and cell sensitivity to a microtubule disrupting agent.  

APC plays an important role in microtubule polymerization at the plus ends and recruits 

end binding protein 1 (EB1) for stabilization of microtubule fibers [238, 239, 249]. The C-

terminus of APC contains domains for both microtubule and EB1 binding [250]. Consistent with 

the role of APC in microtubule polymerization, both ApcMin/+ and APCΔC-expressing HEK293 

cells showed aberrant microtubule shape (spindle-shaped microtubule fibers). Additionally, Apc-

mutant cells, occasionally, lacked microtubule networks, while exhibiting more peripheral 

localization of microtubules. This may be attributed to the role of microtubules in cortical 

anchoring and cell-cell adhesion, which is necessary for cell survival [251, 252]. Furthermore, 

mutations in APC have also been shown to upregulate EB1 during colorectal cancer (CRC) 
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progression to enhance the stability of microtubules during mitosis [253, 254]. A number of 

microtubule disrupting agents tested (e.g., vinca alkaloids and nocodazole), in vitro, target cells 

independent of APC mutation [255-257]. Therefore, targeting pathways that results in reduced 

microtubule stability and enhanced cell death signaling may lead to the development of specific 

and effective chemopreventive agents. 

Previously, we demonstrated that disruption of microtubule polymerization can enhance 

the cell surface expression of death receptors, such as TNFR1 [145]. This is consistent with our 

finding that Apc mutant IMCE cells were sensitive to cell death by TNF. We also showed that 

AK301 and other active derivatives induced the formation of multiple microtubule organizing 

centers (MTOCs) in colon cancer cells. In this study, we show that supernumerary centrosomes 

are an early step in colon carcinogenesis, following APC mutation. Centrosomes are the primary 

sites for microtubule organization, regulating cell shape, polarity, motility, and cell division 

[258, 259]; centrosome amplification is a common characteristic of various human cancers [157, 

159, 260, 261]. We propose that APC mutations result in over-duplication of centrosomes during 

synthesis phase of cell cycle. These centrosomes are then clustered into two foci to ensure proper 

segregation of the genome. Disruption of microtubules polymerization (e.g., AK301 and 

derivatives), without their complete abrogation (as in the case of vinca alkaloids), or centrosome 

declustering (e.g., bromo-noscapine, EM011 [262]) may be an effective way of targeting mutant 

cells for elimination. How APC mutations result in centrosome amplification and how 

declustering of centrosomes sensitizes cells to apoptosis requires further investigation. This may 

have implications in preventing colon cancer in patients at high risk for developing the disease. 

Akin to the role of APC in microtubule polymerization, APC is required for regulation of 

microtubule-kinetochore attachments, and thus, mitotic checkpoint [209]. Moreover, APC 
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interacts directly with mitotic checkpoint proteins, BUB1 and BUBR1, providing stable 

microtubule-kinetochore attachments [263]. Therefore, mutations in APC lead to dysfunctional 

mitotic checkpoint and may result in cells slipping from mitosis. This gives rise to chromosomal 

instability and results in tetraploidy in vivo. Tetraploidy has been correlated with poor cancer 

prognosis [235]. Genetic instability (or chromosomal instability) is not only cancer-promoting, 

but also tumorigenic [235, 264]. Consistent with our previous results with colon cancer cells, 

analysis of AK301-treated cells showed that AK301 arrested cells in mitosis. However, it should 

be noted that only APC mutant cells (both IMCE and APCΔC-GFP HEK293 cells) were prone to 

apoptosis, albeit mitotic arrest similar to APC normal cells. We propose that microtubule 

disruption by AK301 induces the formation of multiple MTOCs, activating mitotic checkpoint in 

an APC-independent manner. In light of our previous results, it is possible that disruption of 

microtubules by AK301 enhances death receptor signaling and aggregation of death receptors 

may activate caspase cascade, resulting in apoptosis.  

In summary, APC mutations result in genetic alterations and molecular aberrations that 

promote colon carcinogenesis. Our results shed light on the early molecular changes in colon 

cells following APC mutations. It is important to understand the mechanisms that undermine 

apoptosis and promote aberrant cell division. This could lead to development of novel, targeted 

therapies and chemopreventive agents for elimination of mutated cells from colon crypts. 
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CHAPTER 6 

CONCLUSIONS 

 

 Our initial work was focused on understanding how colon cancer cells survive their 

inflammatory micro-environment with high levels of death ligands, such as TNF. We identified a 

novel class of piperazine-based compounds that sensitized colon cancer cells to death ligands. 

Further studies on these compounds generated a more potent AK301 with EC50 of 115 nM and 

elucidated their role in mitotic arrest through disruption of microtubule polymerization and 

ligand-dependent apoptosis by increasing the surface expression of death receptors. Additional 

studies to understand the vulnerability of AK301-arrested cells indicated that activation of ATM 

and stabilization of p53 in the mitotically arrested cells were responsible for inducing apoptosis 

in mitotically arrested following their exit from the arrest. Furthermore, we showed that AK301 

was able to target APC mutant cells in vitro effectively in the absence of death ligands. Table 6.1 

summarizes the apoptotic inducing effects of AK301 treatment on different cell lines analyzed in 

this dissertation, both in the presence of TNF or following release from mitotic arrest. Table 6.2 

describes how patients with different types of colonic lesions would be predicted to respond to 

treatment with AK301. As shown in the table, mutations in APC and/or p53 are predicted to 

respond differently to AK301 and TNF. Over 80 percent of colorectal cancers have mutations in 

the APC tumor suppressor gene, most of which result in a truncated protein. Since APC mutant 

cells are more sensitive to AK301 treatment, we envision administration of AK301 would 

selectively target mutant cells for elimination. This targeting would be observed in initiated 

colon tissue that is still heterozygote for APC and would be accentuated in tissue environments 

with high levels of TNF, which is typically found in colon cancers. The activation of p53 would 
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play an important role in elevating apoptosis, particularly after AK301 levels have dropped 

following excretion. Approximately 50 percent of all colorectal cancers express wildtype p53 

and AK301-induced apoptosis would be high in these tumors after Ak301 levels drop and cells 

are released from arrest. In general, our data suggest that colon cancers with a mutated APC gene 

and a wildtype p53 gene would be most sensitive to AK301 treatment due to a combined effect 

of p53-induced apoptosis and by extrinsic apoptosis by TNF in the tumor microenvironment. 

 There are two general classes of colon cancers—those showing chromosomal instability 

and those with a hypermutator phenotype. Hypermutated cancers, which represent ~20% of 

colon cancers, are usually p53-normal, but about half of the hypermutated cancers have APC 

mutant [40]. Based on these statistics, we predict that AK301 could potentially provide a 

significant therapeutic benefit to ~10% of colon cancer patients. 

Overall, mutations in colorectal cancers result in molecular alterations that may be 

targeted with specificity and more effectively. Moreover, understanding the ways in which 

cancer cells take advantage of APC mutations will provide insight into pathways that promote 

tumorigenesis. In these studies, we explore the critical regulation of microtubule spindle 

formation and mitotic checkpoints by APC, identify small molecule agents that target APC 

mutant and colon cancer cells with more specificity. 
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Table 6.1. AK301-induced apoptosis in different cell lines in the absence or presence of 

TNF 

Cell type 
Mutation status Apoptosis with AK301 

APC TP53 - TNF + TNF 

YAMC or GFP HEK293 
(normal) +/+ +/+ Low Low 

HT29 -/- -/- Low High 

HCT116 +/+ +/+ High High 

HCT116 p53-/- +/+ -/- Low - 

IMCE -/+ +/+ High High 

APCΔC-GFP HEK293 -/+ +/+ High - 
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Table 6.2. Predicted effects of AK301-induced mitotic arrest and release from mitotic 

arrest on different colon tumor types 

Tissue type Mutation status AK301 treatment AK301 excretion 

Cancer 
(hypermutated) APC-/- TP53+/+ Mitotic arrest, High TNF, 

High apoptosis Highest apoptosis 

Cancer 
(hypermutated) APC+/+ TP53+/+ Mitotic arrest, High TNF, 

High apoptosis High apoptosis 

Cancer 
(chromosomal 
instability) 

APC-/- TP53-/- Mitotic arrest, High TNF, 
High apoptosis 

Continuing mitotic arrest, 
Residual apoptosis 

Initiated APC-/+ TP53+/+ Mitotic arrest, Low TNF, 
Moderate apoptosis 

Completion of mitosis, 
Moderate apoptosis 

Normal APC+/+ TP53+/+ Mitotic arrest, Low TNF, 
low apoptosis 

Completion of mitosis, 
Low apoptosis 
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6.1. Enhancing apoptosis in colon cancer cells 

 Immune and inflammatory cells frequently infiltrate colon cancer cells and early colonic 

lesions [75, 265, 266]. Even though inflammatory cytokines have anti-tumor activity, chronic 

inflammation can promote cancer progression through the production of growth stimulating 

factors and DNA-reactive metabolites [267, 268]. We identified AK301 and its analogs that 

sensitized colon cancer cells to death ligands without significantly affecting cell survival. These 

compounds induced mitotic arrest in cancer cells and apoptosis in the presence of the death 

ligands. We showed that cellular sensitivity to the death ligands was primarily due to increased 

death receptor expression on the cell surface. These compounds (especially our most potent 

compound, AK301), are therefore, particularly useful in activating apoptotic signaling and 

sensitizing colon cancer with high levels of inflammatory signaling. 

 Structure-activity relationship studies revealed that AK301 and its analogs reduced the 

rate of microtubule polymerization in contrast to agents that induced greater disruption of 

microtubules. This reduced polymerization (over abrogation) may play a role in death signal 

trafficking on microtubule networks. One possible explanation is that AK301 alters microtubule 

networks in a way that the death receptors can be delivered to the cell surface more efficiently, 

but their removal is hindered. 

Furthermore, studies to understand the mechanism of AK301 showed that mitosis-to-

apoptosis transition requires exit from mitosis. Interestingly, we found that AK301 treatment and 

withdrawal was sufficient to induce apoptosis in p53-normal colon cancer cells. AK301 arrest 

induced high levels of activated ATM, which stabilizes p53, resulting in apoptosis. Some studies 

suggest that ATM activation, by itself, may target the activation of death receptors and caspase-8 

[269, 270]. Activation of ATM signaling was not observed with other agents that abrogated 
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microtubule polymerization. How AK301-induced mitotic arrest results in ATM signaling is 

unclear. 

Overall, our studies suggest that cancer cells can be sensitized to undergo apoptosis and 

understanding the mechanisms that reactivate apoptotic processes in cancer cells can lead to the 

development of targeted chemotherapeutic agents. 

 

6.2. Targeting mutant, non-transformed colon cells with AK301 

 The five-year survival rate for stage I colon tumors is 90 percent [2, 5]. Unfortunately, 

less than 40 percent of colon tumors are detected at an early stage; the five-year survival rate 

drops rapidly with each subsequent stage of colon cancer [1, 2]. Moreover, 30-50 percent of the 

patients undergoing curative resection for colon cancer have recurrent disease [5]. Besides early 

diagnosis and accurate staging of colon cancer patients, there is a need to identify new 

chemopreventive agents to reduce the risk of colon cancer in at-risk patients. Studies indicate 

that mutated cells of the colonic crypt as well as early lesions exhibit molecular differences due 

to APC and other mutations [203, 229, 239, 250]. These differences may be exploited, such as 

with AK301, to target mutated cells, making them vulnerable to cell death, thereby reducing the 

risk of developing colon tumors. We envision AK301 interfering with microtubule 

polymerization in a manner similar to mutated APC. This disruption may accentuate mitotic 

arrest at a state that activates ATM signaling. Whether these compounds can be used for this 

application remains to be determined. 
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6.3. Future directions 

 Our studies identified novel compounds that sensitize APC mutant (non-transformed) 

cells and colon cancer cells to apoptosis through a mitotic-to-apoptotic transition of the exiting 

arrested cells. In our previous studies, we showed that the positioning of chloride group on 

phenyl and ethoxy group on benzoyl groups on the piperazine core were required for the activity 

of these compounds. Currently, further structure-activity relationship studies are underway to 

modify these side groups develop more potent compounds that can robustly and specifically 

transition cancer cells into apoptosis. Moreover, new generation of compounds will feature 

probes that will aid in target identification and the mechanism of action in more detail. 

All of the studies have been carried out in in vitro systems using either cancer cell lines or non-

transformed cells. Although these systems provide a cost and time effective method for screening 

and development of new agents, it is challenging to extrapolate in vitro results in vivo. Our near-

future goals are to determine the effect of these agents in Apc mutant and xenograft mouse 

model, assessing the effect of AK301 on survival and tumor volumes in mice. 

 

 In summary, current clinical diagnosis and treatment of colon cancer demands new 

approaches for prevention and treatment of colon cancer. A move towards individualized 

approach to treatment could yield better outcomes. Our studies provide evidence that APC 

mutations could result in cytoskeletal aberrations in the colonic cells that can be targeted 

effectively, reducing the risk of disease progression. Moreover, our studies provide a paradigm 

for targeting mitotic spindle defects and mitotic checkpoint with small molecule agents. Further 

development of pharmacological agents for specific targets will help in detailed understanding of 
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the processes at play in mutated cells and aid in the identification of novel chemopreventive and 

chemotherapeutic agents. 
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APPENDIX A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1. Structures of active compounds from the screen. 

Structures of the compounds selected out of a screen of 400 compounds from ChemBridge 

DIVERSetTM library of compounds. These compounds showed the highest levels of caspase-3 

activity as suggested by the percentage of cells expressing cleaved caspase-3. The respective 

IUPAC names of these compounds are listed. 
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Figure A2. Structure-specific requirement for TNF sensitization of colon cancer cells. 

(A) Structural analogs of AK3 and AK10 (AK20-AK24) were prepared with modifications to the 

benzoyl group and tested for TNF-sensitizing activity. Modifications included removal of 

benzoyl groups (AK20), substitution with tert-butyl (AK21), benzo[1,3]dioxol-5-yl (AK22), 

phenyl (AK23), and pyridine-4-yl (AK24). (B) Ht29 cells treated with analogs in (A) at 25 µM 
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and tested for their ability to enhance caspase-3 activation in a TNF-dependent manner using the 

DEVD-AMC cleavage assay. AK3 and AK24 induced significantly higher caspase activity than 

the other compounds tested (ANOVA, Tukey’s post-doc). (C) Dose-dependent caspase 

activation with AK3 and AK24 in the presence or absence of TNF was determined using the 

DEVD-AMC substrate. AK3 was significantly more active than AK24 at lower concentrations 

(*P < 0.05, **P < 0.01) 
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Figure A3. Structures of compounds that alter microtubule dynamics. 

Colchicine, nocodazole, and vinca alkaloids (vincristine and vinblastine) are microtubule 

destabilizers, whereas paclitaxel acts to stabilize microtubules. 
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Figure A4. Validation of AutoDock Vina for molecular docking study. 

(A) Colchicine, and (B) vinblastine were removed from their respective PDB structures and 

docked back into tubulin. The lowest energy structural poses obtained from docking were 

compared to that of the published poses. Both colchicine and vinblastine docked to their 

respective site with similar poses. (C) Lowest energy poses of AK3, AK301, and AK303. All 

three compounds bind in the same site on tubulin with similar poses. 
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Figure A5. AK301-treated HCT116 cells show activation of γH2AX, but not other mitotic 

arresting agents. 

p53+/+ HCT116 colon cancer cells were treated with 500 nM of the indicated mitotic arrest 

agents. Cells were then fixed and stained for γH2AX and PI as counterstain for DNA. Cells were 

analyzed by flow cytometry. Analysis was performed on cells that stained positive for PI. (B) 

Quantification of the flow cytometric data in (A). All agents induced γH2AX activation to some 

extent (*P < 0.05), but AK301-treated induced a significantly higher (15-fold) (**P < 0.0001) 

activation of γH2AX. 
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Figure A6. Expression of APCΔC-GFP in HEK293 cells with high transfection efficiency. 

(A) HEK293 cells were transiently transfected with GFP or APCΔC-GFP containing plasmid 

using Lipofectamine® 3000 Reagent for 24 hrs. Cells were harvested and analyzed by flow 

cytometry. Transfection of HEK293 cells yielded high transfection efficiencies (> 80%). (B) 

Protein extracts from transiently transfected APCΔC-GFP and GFP were prepared using RIPA 

protein extraction protocol. The lysates were run on polyacrylamide gels, transferred to a 

nitrocellulose membrane and immunoblotted for N-terminus of APC. APCΔC-GFP HEK293 

showed the expression of truncated APC-GFP fusion protein. 
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