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Confinement in 3+1 Dimensions

Ibrahim Burak Ilhan, Ph.D.

University of Connecticut, 2016

In this thesis we focus on two important problems of modern physics: the phe-

nomenon of confinement in non-Abelian field theories and the unitarity of theories

with higher derivatives.

In the first part we describe an effective theory of a scalar field, motivated by some

features expected in the low energy theory of gluodynamics in 3+1 dimensions.

The theory describes two propagating massless particles in a certain limit, which

we identify with the Abelian QED limit, and has classical string solutions in the

general case. The string solutions are somewhat unusual as they are multiply

degenerate due to the spontaneous breaking of diffeomorphism invariance. Nev-

ertheless, all solutions yield an identical electric field and have the same string

tension. We conclude the first part by further investigating the Abelian limit of

the model presented and constructing a Lagrangian with a four-derivative kinetic

term and demonstrate that, despite the seeming nonlinearity of the theory, it is

equivalent to a theory of a free photon.
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In the second part we start by giving a simple discussion of ghosts, unitarity vi-

olation, negative norm states, and quantum vs classical behavior in the simplest

model with a four-derivative action - the Pais-Uhlenbeck oscillator. We also point

out that the normalizable “vacuum state” (in the sense defined below) of this

model can be understood as a spontaneous breaking of the emergent conformal

symmetry. We provide an example of an interacting system that couples the

“particle” and “ghost” degrees of freedom and nevertheless remains unitary on

both the classical and quantum levels. The rest of the second part focuses on the

analysis of conformal gravity in translationally invariant approximation, where

the metric is taken to depend on time but not on spatial coordinates. We find

that the field mode, which in perturbation theory has a ghostlike kinetic term,

turns into a tachyon when nonlinear interaction is accounted for. The kinetic term

and potential for this mode have opposite signs. Solutions of nonlinear classical

equations of motion develop a singularity in finite time determined by the initial

conditions.
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Chapter 1

Introduction

QCD is a theory of quarks and gluons, but its particle spectrum is composed of

hadrons and mesons. This behavior is attributed to confinement phenomenon.

However, there is no direct analytical explanation for confinement starting from

the basic principles. On the other end of the Standard Model spectrum (QED), we

have the massless photon and the quantized electric charge. There is no a priori

reason for the electric charge to be quantized, except for the experimental fact

that it is. Massless nature of the photon is usually attributed to gauge symmetry,

but this is not really a satisfactory explanation as there are different mechanisms

(Higgs mechanism, topological mass etc) for the gauge particles to acquire mass.

In the first part of this thesis (Chapter 2), we discuss our attempt in explain-

ing the mechanism responsible for confinement. In the first section of chapter 2,

we introduce the problem at hand in more details, and present a theory that works

very well in 2+1 dimensions. Sections 2.2 is our first attempt to a generalization

of the ideas in 2+1 dimensions to 3+1. Section 2.3 aims to improve some of the

properties of the model presented in section 2.2. A detailed outline of Chapter 2

1
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is presented at the begining of the chapter. Sections 2.2 and 2.3 are published in

[1] and [2] respectively.

In Chapter 3, we turn our attention to a different problem in physics: theo-

ries with higher time derivatives, their importance in physics and their consistency.

Such theories are commonly used in modified theories of gravity. We start that

chapter by presenting a more detailed introduction to such theories. In section

3.1, we discuss some rather less known concepts of theories with ghosts, and show

that there exists stable interacting such quantum mechanical systems. Section 3.2

focuses on conformal gravity, which is a very promising candidate for a quantum

theory of gravity, as explained in that section. The material presented in chapter

3 is published in [3] and [4]. A more detailed outline is presented at the beginning

of that chapter 3.



Chapter 2

Confinement

As discussed in the introduction, QCD is a theory of quarks and gluons. It is

defined by the Lagrangian:

L = −1

4
Ga
µνG

µνa + ΨI(i /D −mI)ΨI (2.1)

The first term represents the Yang-Mills part or gluodynamics, and the

second term represents quarks and their interactions with gluons. This Lagrangian

is well understood in the short distance or high energy regime, but it is hard to

say the same thing about the long distance behavior or low energies. The problem

is very simple: the fundamental degrees of freedom are quarks and gluons, but

the asymptotic states are composed of mesons and baryons.

This behavior is explained through confinement: the force between a quark

antiquark pair does not decrease by separation, the potential between them in-

creases linearly. This behavior is well established by lattice calculations [5] [6].

Also, there is evidence coming directly from the experiments [7], such as the

3
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“Regge behavior”. Figure 2.1 [8] is a plot of spins of some mesons against their

mass squared, which appear to be proportional to each other. This is what one

expects if the meson can be defined as a “spinning stick”: a straight line with

constant mass per unit length. Such a description of a meson not only gives the

above proportionality, but also provides a constant force thus a linearly increas-

ing potential. So, if we can find a mechanism that squeezes the field between a

quark-antiquark pair in a similar way, into a color electric flux tube, the energy

stored in such a configuration will be linear with separation. But the question is

how such a flux tube forms in QCD?
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Fig. 2.1: Regge trajectories [8]
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One simple and probably the most well known idea in explaining this behav-

ior comes from superconductivity. Consider a type-II superconductor. Imagine

the situation where a monopole pair is placed in such a medium. Magnetic flux

needs to be conserved, but on the other hand the superconductor cannot tolerate

the magnetic field. This “paradox” is resolved by the formation of a flux tube -

called the Abrikosov vortices, to which the magnetic field is squeezed into. This

mechanism is suggested as a prototype for quark confinement by ‘t Hooft and

Mandelstam [9] [10]. All one has to do in order to get a proper definition in this

sense is to replace monopoles by quarks, and instead of a magnetic flux tube, we

need a “color electric flux” tube formed.

NSNS

Cooper pair condensate

magnetic fluxmagnet magnet

Abrikosov vortex
(flux tube)

Superconductor of
       the 2   kindnd

Fig. 2.2: The Meissner effect in QED [11]

In quantum field theory, above ideas can be formalized by the Landau-
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Ginzburg description of the superconductor. It is given by the Abelian Higgs

model:

L =
1

4
F 2 + |Dµφ|2 + λ(φ∗φ− v2)2 (2.2)

Here, in a similar way, Nielsen-Olsen vortices are formed. The behavior of

these vortices and the spectrum of the above model is well known.

Even though this picture is very simple and appealing, it does not really

capture the problem in its entirety. One of the main problems with this description

comes from the lack of a gauge invariant description of a monopole for a Non-

Abelian theory. One can define a similar object by fixing the gauge, but the

results, in particular the properties of the strings will be gauge dependent [12].

In relation to this problem, the description above is essentially a mechanism for

an Abelian theory, and generalization to non-Abelian theories are usually follow

some procedure which is based on singling out an Abelian subgroup.

One can make another objection to the dual superconductivity based on its

spectrum. If this model is a good effective description of the low energy dynam-

ics, the lowest mass excitation of the Abelian Higgs model should correspond to

those of QCD. The lowest lying spectrum of QCD is now well known from lat-

tice calculations, and the first two are a scalar glueball with mass 1.7 GEV and

a spin 2 tension glueball of mass 2.4 GEV. On the other hand, for the Abelian

Higgs model, the lowest excitation are the well known scalar and vector fields. In
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particular the vector field, which is absent in the QCD picture is critical for the

description of the superconductor. [13].

In this chapter our aim is to describe confinement by “guessing” the low

energy effective theory of pure Yang-Mills using the symmetries of the theory. It

is largely accepted that confinement is a property of pure gluodynamics [14], so

we are interested in this part of the QCD Lagrangian only. Our approach is based

on very simple principles: in a quantum field theory in order to write an effective

theory that describes the long distance behavior, we do not need to know every

detail of the full theory. One can construct an effective theory based on a “bottom

up” approach, in which we impose constraints on our candidate Lagrangian based

on the expected symmetries of the theory at low energies. In addition to that, at

large separations, only the particles with no or small mass will be important, and

there exists a natural candidates for such particles if the theory has spontaneously

broken continuous global symmetries: the Goldstone bosons.

Even though it is true that we do not really know the low energy descrip-

tion of QCD, It was argued by t ’Hooft that non-Abelian gauge theories without

fundamental fields exhibit a discrete magnetic Z(N) symmetry, and it is also dis-

cussed that the spontaneous breaking of this symmetry is a direct indication of

confinement in such theories [15]. Details of this formulation is given in section

2.1.1. If it is true that this symmetry governs the low energy dynamics of QCD, we

should be able to obtain an effective theory following a symmetry based approach,
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as discussed above. The magnetic Z(N) symmetry here is not a continuous sym-

metry, which means one cannot directly employ Goldstone’s theorem to get the

low energy excitations, but as we discuss in the next section, it can still be useful

in describing the low energy dynamics.

2.1 An Effective Model of Confinement

2.1.1 Magnetic Z(N) Symmetry in 2 + 1 Dimensions

Here we present the arguments of ‘t Hooft regarding the existence of a Z(N)

symmetry, and its relation to confinement [15], [16]: our initial setup is a SU(N)

theory with Adjoint Higgs fields, so all the fields present in the theory are invariant

under the center Z(N) of SU(N). The potential is not important for our purposes,

as long as it is chosen such that Higgs mechanism takes place: gauge symmetry

is broken, and the spectrum consists of the usual massive gluons and the Higgs

particles; but there also exists extended soliton solutions: heavy stable magnetic

vortices. These particles are heavy compared to the rest of the spectrum, but they

are stable by a topological argument: the nearby field configuration is nontrivial

but far away from the core, it is in pure gauge:

Φi(x) = U(x)φi, Aµ = iU(x)∂µU(x) (2.3)

.

Here φi is the vacuum expectation value of the Higgs field Φi.
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In the presence of a vortex, the space is no more simply connected. Starting

with a group element U , as we go around the vortex, it does not return to its

original value, but instead goes to another element differing by a center element

of the gauge group: e2πiNU . Normally, such multivalued configurations are not

well defined, but Adjoint Higgs fields do not feel this discontinuity by the center

of the gauge group, and the energy of such a configuration is finite. In fact,

given the potential one can calculate its mass. Furthermore, such a configuration

cannot be smoothly deformed into the vacuum, but it is possible for N such

vortex configuration to annihilate each other since for an SU(N) gauge group, that

configuration is equivalent to the vacuum. Explicit forms of the operators that

creates these vortices are called “singular gauge transformation” can be derived

using their properties.

The stability of this configuration can be explained by the properties of the

vacuum manifold: there is a nontrivial mapping between the vacuum manifold

and the boundary of the space, or in other words, the first homotopy group is

nontrivial: Π1(SU(N)/Z(N)) = Z(N).

Existence of such heavy stable particles can be possible if they carry con-

served quantum number, that is the magnetic Z(N) - (since vortex number is

preserved mod N). This is the basis of the reasoning that lead to the existence

of a “magnetic Z(N) symmetry” in the completely Higgled phase. Note that this

symmetry is associated with the charge of the vortex and it is not the same Z(N)
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as the center of the gauge group.

So we have established that the theory in completely Higgsed phase has a

Z(N) symmetry. We can keep changing the parameters smoothly such that the

theory goes to the confining phase from the completely Higgs phase. Further

changing the parameter we can decouple the Higgs fields completely from the

gluons. We end up with a pure Yang-Mills theory, through a smooth limiting

procedure which does not change the topology of the gauge group so the Z(N)

symmetry will also be present in this limit, even though it will be realized in

a different way. The argument is that magnetic Z(N) will be spontaneously

broken in the confining phase. ‘t Hooft argues that spontaneous breaking of

this discrete symmetry will lead to N different vacua characterized by the value

of the topological charge Z(N). These vacua will be separated by Bloch walls

with energy, which are closed strings in 2+1 dimensions. If we introduce heavy

quarks in the fundamental representation, they will be confined by such a string,

providing a linear confinement.

This formulation is the basis of our ideas in constructing in an effective

theory of confinement. The vortices discussed here are analogs of Nielsen-Olesen

vortices. As we will see below, these ideas and the effective theories are studied in

detail 2 + 1 dimension, where things are under control and the symmetry is well

understood. Even though ‘t Hooft’s arguments can also be generalized to 3+1

dimensions, rest of the construction cannot be generalized in a straightforward



11

manner.

2.1.2 The Effective Theory in 2+1 Dimensions

In 2+1 dimensions one has a very simple and straightforward relation between

confinement and spontaneous breaking of a discrete magnetic symmetry as dis-

cussed above [15], [17]. Additionally, in 2+1 dimensions, non-Abelian gauge theo-

ries exhibiting the phenomenon of confinement are related to Abelian theories on

the effective field theory level by a simple symmetry breaking deformation. This

deformation breaks the continuous U(1) magnetic symmetry of an Abelian the-

ory down to a discrete group ZN for SU(N) gauge theories with adjoint matter.

The mere fact of the presence of this deformation, coupled with the spontaneous

breaking of the residual discreet group leads with certainty to a confining long

distance behavior [17], [18].

Before discussing the model itself, we will recall briefly the story of 2+1

dimensional gauge theories. As a prototypical Abelian gauge theory consider

scalar QED. It posesses a continuous Uµ(1) global symmetry generated by the

total magnetic flux through the plane of the system, Φ =
∫
d2xB(x). The order

parameter for this symmetry is one complex field V , which creates point-like

magnetic vortices. In the Coulomb phase 〈V 〉 = v 6= 0 and Uµ(1) is spontaneously

broken. The low energy dynamics is qualitatively described by the effective “dual”



12

Lagrangian

L = −∂µV ∂µV ∗ − λ(V ∗V − e2

8π
)2 (2.4)

The Goldstone boson of the Uµ(1) symmetry breaking is identified with the mass-

less photon, while the electric charge in the dual formulation is the topological

charge of the field V

Jµ =
1

e
εµνλ∂νV

∗∂λV (2.5)

A charged state of QED in the effective description appears as a hedgehog - like

soliton of V : V (x) = veiθ(x), with θ = tan−1 y/x.

This effective formulation is also a good basis for description of confinement

in non-Abelian theories. In particular the effective theory of a weakly interacting

SU(N) model is essentially the same as eq.(2.4), except with a potential which

breaks the magnetic Uµ(1) symmetry down to ZN

L = −∂µV ∂µV ∗ − λ(V ∗V − e2

8π
)2 + µ(V N + V ∗N) (2.6)

The perturbation reduces the infinite degeneracy of vacua of the Abelian theory to

a finite number of degenerate vacuum states connected by the ZN transformations.

As a result, a charged state does not have a rotational symmetry anymore, but

the winding is concentrated within a quasi one dimensional “flux tube” [17].

This is a very simple picture, and a very appealing one inasmuch as it iden-

tifies charged objects with topological defects which inherently have long range

interactions due to their topological nature. It also identified photons with Gold-
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stone bosons, providing a natural symmetry based explanation for masslessness

of the photon.

It is natural to ask, whether in 3+1 dimensions one can have a similar

description, which encompasses the massless nature of photons in QED as well

as topological mechanism of confinement in non-Abelian theories. The situation

here of course, is much more complicated. First of all, in 3+1 dimensions photons

are vector particles and so it is not clear at all whether they can be understood

as Goldstone bosons. Even if such a case can be made for photons, it is not easy

to identify the relevant conserved current that breaks spontaneously. It is clear

that the current has to be related to the dual field strength F̃µν consistent with

the fact that photons have spin one [19]. The dual field strength, however has no

local order parameter, and thus is an object of a very different kind than ordinary

vector currents, which we are used to deal with. Another complication is, that

classical effective description assumes weakly interacting theory, while QCD is of

course strongly interacting.

All these are difficult questions, to which we do not attempt to provide

answers here. Instead we will be content to construct a model that encompasses

the following basic features:

1. The model should describe dynamics of scalar fields, and contain no

fundamental gauge fields.

2. The model should have the limit (putative “Abelian regime”) in which
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it has two massless degrees of freedom, which are identified as Goldstone bosons.

These massless Goldstone bosons in our model are intended to play the role of

photons.

3. In the Abelian regime the model must provide for existence of classical

topological solitons, which play the role of electrically charged particles. We re-

quire the topological charge that is carried by these solitons to reflect the mapping

of the spatial infinity onto the manifold of vacua, and thus be given by Π2(M).

The energy of these solitons has to be finite in the infrared. The energy density

of a soliton solution should decrease as 1/r4 far from the soliton core. This is

nontrivial in 3+1 dimensions, since our model has no gauge fields, while scalar

fields that contribute to Π2 have to be long range.

4. Soliton must become confined in the “Non-Abelian regime”, when a

symmetry breaking perturbation is added. This same perturbation must elim-

inate massless Goldstones by explicitly breaking the (previously) spontaneously

broken symmetry group down to a discrete subgroup. Confinement should be

accompanied by formation of string between the solitons.

In this chapter we will present our attempt in constructing such a model in

3+1 dimensions. We will start section 2.2 by constructing a very simple theory

that satisfies above requirements. In section 2.2.1 we will analyze the Abelian

limit and the symmetries of the model. The model has a very large and rather

puzzling global symmetry, that will be further discussed in later sections. We will
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show both by constructing photon states and discussing the equations of motion

that even though the model has similarities to the electrodynamics, it is not an

exact description. In section 2.2.2, following the guidelines from 2+1 dimensions,

we will introduce a perturbation that will get us to the non-Abelian limit of the

model and look for confining string solutions, which will also have rather unusual

properties. A further perturbation that breaks the symmetry down to Z(N) is

presented in section 2.2.3. We will conclude section 2.2.4 by discussing our results.

Section 2.3 is an attempt to improve the Abelian limit of the model presented

in section 2.2. We will identify the source of the problem and fix it directly by

modifying the action in section 2.3.1. This modification will give us a model that

is exactly equivalent to a theory of a free photon at the Hamiltonian level. Lorentz

transformation properties of the electromagnetic fields discussed in section 2.3.2

shows that the fields no more transform as usual scalar field, but have “anomalous”

terms in their transformations. This modified model comes with a new gauge

symmetry that has no analog in 2+1 dimension, which makes the understanding

of the non-Abelian limit more challenging. We discuss some ideas in this direction

in the section 2.3.3.

2.2 The Curious Case of an Effective Theory

In this section we discuss a 3+1 dimensional model which has all the above fea-

tures and discuss its properties, which are somewhat unusual. In particular, the
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requirement of the finiteness of the energy of a topological soliton in the Abelian

regime is very restrictive. It leads to rather unusual properties of the confining

strings in the Non-Abelian regime such as existence of an infinite number of zero

modes. This degeneracy can be lifted, however that requires the addition of an-

other perturbation which is not clearly related with breaking of symmetries of

the theory. In the Abelian regime, the model contains classical solutions with

magnetic charge density, and thus the effective dual field strength tensor is not

conserved. Related to that, although we are able to construct solutions of equa-

tions of motion that behave as single photons, the model has no solutions that

correspond to a two photon state with arbitrary polarization vectors. Even though

it is clear that this model cannot be taken literally as the effective theory of QCD,

it does have some similarity with Fadeev-Niemi model, that has been proposed as

an effective theory of glueballs from a completely different perspective [20].

2.2.1 The Abelian Model

The Field Space and the Lagrangian.

As explained in the previous section, we wish to construct a model of scalar fields

which contains two massless degrees of freedom and solitons of finite energy. The

simplest option that we adopt is a theory with two scalar degrees of freedom

endowed with SU(2) symmetry. Spontaneous breaking of this symmetry must

lead to two massless modes. Thus we choose as the configuration space the O(3)
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nonlinear σ-model.

φa, a = 1, 2, 3; φ2 = 1 (2.7)

The moduli space allows for the requist topology Π2(S2). The topological charge

associated with it, is identified with the electric charge of QED

Q =
e

4π2

∫
d3xεabcεijk∂

iφa∂jφ
b∂kφ

c (2.8)

As the first task, we have to contend with the following potential problem. In a

theory with the standard kinetic term, the energy of a state with non-vanishing

topological charge diverges in the infrared. A typical topologically nontrivial field

configuration is a rotationally symmetric hedgehog

φah(x) =
ra

|r|
f(|r|); f(|r|)→r→∞ 1 (2.9)

The standard two derivative kinetic energy diverges quadratically on such a con-

figuration. In order to make the energy of the soliton finite, we need to introduce

a kinetic term with more than two derivatives.

In fact, there exists a unique four derivative term which is a natural choice

for a kinetic term for our model. The identification of the electric charge with the

topological charge eq.(2.8) also naturally leads to the identification of the electric

current as

Jµ =
e

4π2
εabcε

µνλσ∂νφ
a∂λφ

b∂σφ
c (2.10)

and therefore electromagnetic field tensor as

F µν = εabcεµνλσφa∂λφ
b∂σφ

c (2.11)
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Since our goal is to construct a model that resembles QED as close as possible,

the natural choice for the kinetic term is the square of the field strength tensor,

which is just the well known Skyrme term.

Hence we consider the model of a triplet of scalar fields defined by the

following Lagrangian:

L =
1

16e2
F µνFµν + λ(φ2 − 1)2 (2.12)

We note, that the sign of the F 2 term in the Lagrangian is opposite to

that in QED. In the framework of eq.(2.12) the sign is determined so that the

Hamiltonian is positive, rather than negative definite. This feature is common to

models related by duality. For example the same is true in the 2+1 dimensional

models described in the introduction, where the kinetic term in the Lagrangian

of the effective theory when written in terms of the field strength tensor has the

opposite sign to that of Electrodynamics. The reason for this inversion, is that

while in QED the electric field is proportional to the time derivative of the basic

field (in this case Aµ), in the effective dual description it is the magnetic field that

contains time derivative of the vortex field V . Thus in order for the Hamiltonian

of the two models in terms of E and B to be the same, the Lagrangians have to

have opposite sign. This inversion of sign also takes place in our model, and is

the natural consequence of the relation between the field strength tensor and the

basic scalar degrees of freedom eq.(2.11).

In the strongly coupled limit λ → ∞, the isovector φ has unit length, and
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the field strength is trivially conserved

∂νF
µν = 0 (2.13)

This limit therefore corresponds to QED without charges. In this limit the energy

of the soliton eq.(2.9) diverges linearly in the ultraviolet. At finite coupling λ the

variation of the radial component of the field φa softens the UV behavior, and

the soliton energy is UV finite. It is also IR finite thanks to our choice of the

four derivative action. In fact on the hedgehog configuration eq.(2.9) the “electric

field” decreases as Ei(x) ∝ r1

|r|3 , and the energy density away from the soliton core

decreases as 1/r4, just like the Coulomb energy of a static electric charge in the

electrodynamics.

The Equations of Motion

We now derive the equations of motion for the model. For convenience we define

in the strong coupling limit

φ3 = z, ψ = φ1 + iφ2 =
√

1− z2eiχ (2.14)

With this parametrization one has

F µν = εµναβεabcφ
a∂αφ

b∂βφ
c = −2εµναβ∂αz∂βχ (2.15)

The Lagrangian can be written as

L =
1

4e2
(∂µz∂νχ− ∂µχ∂νz)2 (2.16)
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The equations of motion read

∂µ
[ 1

e2
∂νχ (∂µz∂νχ− ∂νz∂µχ)

]
= 0

∂µ
[ 1

e2
∂νz (∂µz∂νχ− ∂νz∂µχ)

]
= 0 (2.17)

This can be combined into

1

e2
∂νG(z, χ)∂µ (∂µz∂νχ− ∂νz∂µχ) =

1

e2
∂ν

[
G(z, χ)∂µ (∂µz∂νχ− ∂νz∂µχ)

]
= 0

(2.18)

where G(z, χ) is an arbitrary function of two variables. These equations have a

form of conservation equations for currents defined as

JGν = G(z, χ)∂µ (∂µz∂νχ− ∂νz∂µχ) (2.19)

The Symmetries and the Correspondence to Electrodynamics.

The conserved currents of eq.(2.19) can indeed be identified with conserved Noether

currents. An unexpected consequence of the choice of the Skyrme term as the ki-

netic term in the Lagrangian, is that the global symmetry group of the model is

much larger than the SO(3) group we have started with.

To see this note that the field strength as defined in eq.(2.11) is related

to an infinitesimal area on a configuration space. Let us be more precise here.

A given field configuration φa(x) defines a map from space-time to a sphere S2.

Consider a given component the field strength tensor, say F12 at some point x.

To calculate it in terms of φ we consider three infinitesimally close points A ≡ xµ,
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B ≡ xµ + δµ1a and C ≡ xµ + δµ2a. These three points in space-time map into

three infinitesimally close points on the sphere φa(A), φa(B), φa(C). The field

strength F12 is proportional (up to the factor a−2) to the area of the infinitesmal

triangle on S2 defined by these three points. Since the action of our toy model

depends only on F µν , it is clear that any reparametrization of the sphere which

preserves area is an invariance of our action.

Thus the SO(3) global symmetry we started with, is a small subgroup of

the area preserving diffeomorphisms of S2, which we denote Sdiff(2) [21]. This

is the group of canonical transformations of a classical mechanics of one degree of

freedom. The infinitesimal symmetry transformation in terms of z and χ is

z → z +
∂G

∂χ
; χ→ χ− ∂G

∂z
(2.20)

with arbitrary G(z, χ). The appropriate Noether currents are precisely those

of eq.(2.19) and the equations of motion are indeed equivalent to conservation

equations of these currents.

It is amusing to note that this symmetry is similar to the world sheet diffeo-

morphism invariance of the Nambu-Goto string. Indeed, if one thinks of the fields

z and χ as the world sheet string coordinates, the world sheet diffeomorphism

invariance is precisely eq.(2.20) 1. Although our setup looks very different from a

string theory, there may be more to this analogy than meets the eye, as the ba-

sic “order parameters” of the magnetic symmetry in QED4 are indeed magnetic

1 We thank Michael Lublinsky for pointing this out to us.
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vortex strings [19]. The S2 topology of the world sheet then implies closed string

loops. We will not develop this analogy any further here, and instead will return

to the field theoretical approach.

The enhanced symmetry means that the moduli space is much larger than

S2 as would be naively the case for symmetry breaking pattern SO(3)→ SO(2).

Any configuration φa(x) that maps the configuration space into an arbitrary one

dimensional curve on S2 has vanishing action and is thus a point on the moduli

space. The moduli space is therefore the union of maps φa(x) that map R4 to L,

where L is an arbitrary point or a one dimensional curve on S2.

Nevertheless, even though the moduli space is not a simple sphere, the topo-

logical charge Q is quantized for any smooth classical configuration of fields φ(x).

A twist in the tale is that there are many more degenerate soliton configurations

than just the rotationally invariant hedgehog of eq.(2.9). Any Sdiff(2) transfor-

mation corresponding to an arbitrary regular function G of eq.(2.20) applied to the

configuration eq.(2.9) generates a soliton configuration φaGh (x) which is degenerate

in energy with φah(x). Note, that although these are different field configurations,

they all correspond to the same electric field Ei = εijkε
abcφa∂jφ

b∂kφ
c, since the

electric (as well as magnetic) field is invariant under the action of Sdiff(2) trans-

formations.
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Plane waves - photon states.

Returning to the Lagrangian eq.(2.12), the natural question to ask is how much

of a relation does it have with electrodynamics. With the identification eq.(2.11),

we know that the field strength F µν satisfies half of Maxwell’s equations. The

equations of motion eq.(2.18) are quite reminisicent of the other half of Maxwell’s

equations. They can be rewritten in terms of F µν as

[∂νG(z, χ)]∂µF̃
µν = 0 (2.21)

Thus, any configuration of the fields z, χ that satisfies ∂µF̃
µν = 0, also satisfies

the equations of motion of our model. The converse is not true: there are solutions

of the equations of motion eq.(2.18) which do not satisfy the equations of motion

of electrodynamics. We give an example of such a solution in Appendix 4.

The model eq.(2.12) is therefore not equivalent to electrodynamics. Nev-

ertheless, it is interesting to ask whether the spectrum of solutions of eq.(2.12)

contains basic excitations of QED, in particular the photons. This is a slight abuse

of language, since we are dealing with a classical theory. We will nevertheless refer

to plane wave configurations of F µν with light-like momentum as photons.

Our aim in this section is to show that the free wave excitations are indeed

solutions of equations eq.(2.18). To this end consider the configuration

χ(x) = Aεµxµ; z(x) = sin kµxµ (2.22)



24

where the vector εµ is normalized as εµεµ = −1. On this configuration

F̃ µν = A(εµkν − ενkµ) cos k · x (2.23)

Thus

∂µF̃
µν = −A

[
(ε · k)kν − k2εν

]
sin k · x (2.24)

This vanishes, provided the momentum vector is light-like and the polarization

vector ε is perpendicular to k:

k2 = 0; ε · k = 0 (2.25)

For a given light-like momentum kµ this equation has three independent solutions

for εµ. One of them, however is proportional to kµ itself. With this polarization

vector, the field strength tensor vanishes. Thus there are two independent polar-

ization vectors εµλ, λ = 1, 2 that correspond to plane wave solutions for F µν . Just

like in QED, it is convenient to choose the polarization vectors so that their ze-

roth component vanishes εµλ = (0, εiλ). The constant A is the overall amplitude of

the electromagnetic wave, whose square is proportional to the number of photons

with a given momentum and a given polarization in the wave.

The arbitrariness in the choice of the polarization vectors is precisely the

same as in the choice of polarization vectors in electrodynamics

εµ → εµ + akµ (2.26)

Note that this shift of polarization vector is affected by the transformation

χ→ χ+ a arcsin z (2.27)
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which is one of the Sdiff(2) transformations eq.(2.20). In fact the two field

configurations eq.(2.22) can be transformed by any element of Sdiff(2) without

changing F µν .

The solution (equations 2.22, 2.23, 2.25) describes a state in all respects

equivalent to the freely propagating photon, and we will refer to it as such. The

setup here is dual to the usual free QED. Normally one introduces the vector

potential Aµ via Fµν = ∂µAν − ∂νAµ. This relation potentiates the homogeneous

Maxwell’s equation ∂µF̃
µν = 0. However, in the free chargeless QED entirely

analogously one can potentiate the other Maxwell equation by introducing the

dual vector potential via F̃µν = ∂µÃν − ∂νÃµ. The dynamics of the dual vector

potential Ãµ is identical to that of Aµ, and it can be expanded in exactly the

same polarization basis as Aµ. In this formulation QED poccesses a dual gauge

symmetry Ãµ → Ãµ + ∂µλ(x).

To make the correspondence between our model and the Electrodynamics

more transparent, we can define a dual vector potential

Ãµ = z∂µχ (2.28)

Under the Sdiff(2) transformation eq.(2.20) it transforms as

Ãµ → Ãµ + ∂µ[G− z∂G
∂z

] (2.29)

which has a form reminiscent of the dual gauge transformation in Electrodynamics

with the gauge function λ(x) = G− z ∂G
∂z

.
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The analogy of eq.(2.28) with the dual vector potential of QED is suggestive,

but one has to be aware that this is only an analogy rather than equivalence. First,

the transformation eq.(2.29) is not a gauge transformation, but rather the action

of a global symmetry transformation of the Lagrangian on Ãµ of eq.(2.28). More

importantly, the vector field defined in eq.(2.28) in terms of two scalar fields is

not the most general form of a vector field, even allowing for a possible gauge

ambiguity. For that reason the variation of the Lagrangian with respect to such a

constrained vector potential does not lead to the homogeneous Maxwell’s equation

directly, but instead to eq.(2.21), which allows additional solutions.

Finally we note, that the solution eq.(2.22) gives a nice and simple interpre-

tation for the properties of the photon states in terms of the effective theory. The

photon momentum is the momentum associated with the variation of the third

component of the isovector φa, while the direction of the photon polarization

vector is determined by the spatial variation of the phase χ.

Although a plane wave F̃µν solves the equations of motion, the equations

eq.(2.21) are not linear in the basic field variables, and thus an arbitrary super-

position of two such solutions, itself is not a solution. We may try to construct a

two photon state by slightly extending the ansatz eq.(2.22).

χ = λµxµ; z = a sin kµxµ + b sin pµxµ (2.30)

with kµ and pµ - both lightlike vectors, λµkµ = λµpµ = 0 and λµλµ = −1. The
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latter two conditions can be satisfied by taking

λµ = α
[
εµ − ε · k

k · p
pµ −

ε · p
k · p

kµ

]
(2.31)

with an arbitrary vector εµ and an appropriate normalization constant α.

The dual field strength tensor can be written as:

F̃µν = a(kµε
k
ν − kνεkµ) cos k · x+ b(pµε

p
ν − pνεpµ) cos p · x (2.32)

with the polarization vectors

εkµ = λµ −
λ0

k0

kµ; εpµ = λµ −
λ0

p0

pµ; (2.33)

This is a bona fide two photon state. Unfortunately by varying λµ at fixed p

and k one cannot obtain two most general polarization vectors for photons with

momenta k and p. This is obvious since both polarization vectors εk and εp have

equal component in the direction perpendicular to the plane spanned by pi; ki.

Thus we are lacking one degree of freedom to be able to construct a two photon

state with arbitrary polarizations of both photons. In Appendix 4 we show that

this is problem is not restricted to our ansatz eq.(2.30), but is a genuine limitation

of our Lagrangian.

2.2.2 The Non-Abelian perturbation and the string solution.

In analogy with 2+1 dimensions we now perturb the theory with the simplest per-

turbation which breaks the O(3) global symmetry. This perturbation should elim-

inate the vacuum degeneracy associated with the spontaneous symmetry breaking.
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We find it convenient to choose a potential that fixes the vacuum expectation value

of the field z to be equal to unity. We thus consider the Lagrangian

L =
1

16e2
F µνFµν −

2

e2
Λ2(z − 1)2 (2.34)

The perturbation breaks not only the SO(3) symmetry, but also generic Sdiff(2)

transformations. Nevertheless, the subgroup generated by

χ→ χ− dG(z)

dz
(2.35)

remains unbroken. We keep this in mind throughout the discussion of this section.

The equations of motion now are

∂µ
[ 1

e2
∂νχ (∂µz∂νχ− ∂νz∂µχ)

]
=

4

e2
Λ2(z − 1)

∂µ
[ 1

e2
∂νz (∂µz∂νχ− ∂νz∂µχ)

]
= 0 (2.36)

With this perturbation there are no finite energy solutions with non-vanishing

topological charge Q. Instead, we expect to find translationally invariant string-

like solution. In the presence of a soliton and anti-soliton such strings will connect

the two and will provide for a linear confining potential. To find such a solution

consider a static field configuration translationally invariant in the third direction.

For such a configuration the only non-vanishing components of Fµν are:

F 03 = 2εij∂iz∂jχ (2.37)
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We look for a solution invariant under rotations in the plane perpendicular

to the string

χ(x) = θ(x); z(x) = z(r) (2.38)

where r and θ are the polar coordinates in the x1, x2 plane. Such a configuration

has a unit winding in the x1, x2 plane which is precisely what one expects from the

string connecting the soliton and anti-soliton. The soliton resides at some very

large negative value of x3. Far to the left of the soliton the field configuration

must be vacuum φ1 = φ2 = 0; z = 1. Thus the topological charge calculated on a

surface enclosing such a soliton is equal to the two dimensional topological charge

- the winding of the phase χ on any plane pierced by the string. An identical

argument applies for the anti-soliton, which resides at large positive value of x3.

Thus indeed our ansatz is appropriate for the string connecting a soliton and an

anti-soliton residing far apart. For our ansatz the equation of motion for the field

χ is trivially satisfied. The equation for z becomes

4z′′ = 4Λ2(z − 1) (2.39)

where z′ ≡ dz
dr2

For the solution to be well defined in the middle of the string and approach

vacuum far away from it, z must have the asymptotic behavior:

z(0) = −1, z(∞) = 1 (2.40)
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The solution is easy to find

z(r2) = 1− 2 exp{−Λr2} (2.41)

The solution has some intuitively expected properties: it has a finite width,

outside which the fields approach vacuum, while inside the string the field values

are different from the vacuum and thus it carries a finite energy density. The

string tension can be calculated exactly

σ = 8π
Λ

e2
(2.42)

Nevertheless, the solution is rather peculiar, since it does not approach the vacuum

exponentially, but rather as a Gaussian. the string therefore has a very sharply

defined width, outside of which the vacuum is reached very quickly. In a theory

with a finite mass gap and a finite number of massive excitations such behavior is

impossible. This strange behavior can be traced back to our non-canonical kinetic

term. Indeed, for simple dimensional reasons, the kinetic energy for a rotationally

invariant configuration is a second derivative with respect to r2 rather than r,

which results in a Gaussian rather than exponential decay of the solution.

2.2.3 The ZN preserving perturbation.

The perturbation considered in the last section was the simplest potential that

breaks the SO(3) as well as the Sdiff(2) symmetries but leaves an O(2) subgroup

of SO(3) and large subgroup Sdiff(2), eq.(2.35) intact. Following the parallel
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with the 2+1 dimensional discussion, we expect the global symmetries to be bro-

ken down to ZN if our effective theory has a chance of mimicking some properties

of SU(N) gauge theories. In this section therefore we consider an additional per-

turbation, which breaks the remaining O(2) symmetry down to the ZN subgroup.

We modify the Lagrangian to

L =
1

16e2
F 2 − 2

e2
Λ2(z − 1)2

[
1− µ(ψN + ψ?N)

]
=

1

16e2
F 2 − 2

e2
Λ2(z − 1)2

[
1− 2µ(1− z2)N/2 cosNχ

] (2.43)

We will only consider regime where the minimum of the potential is at z = 1. It

is easy to see that this is the case as long as

µ <
1

2
(2.44)

For field configurations which do not depend on the longitudinal coordinate x3,

the energy per unit length is given by

E =

∫
d2x

1

2e2
(εij∂iz∂jχ)2 +

2

e2
Λ2(z − 1)2

[
1− 2µ(1− z2)N/2 cosNχ

]
(2.45)

Perturbative solution

Let us first consider the perturbation to be small, µ� 1, and find the first order

corrections to the string solution of the previous section. We take the following

ansatz for the perturbative solution:

z(r, θ) = z(r);χ = θ + χ1(r, θ) = θ + f(r) sinNθ (2.46)
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where z(r) is given by eq.(2.41). This is not the most general form of the per-

turbation, but which nevertheless yields a solution to first order in µ, as we now

show.

To first order in µ the equation for χ1 is

1

e2
8N2(z′)2f sinNθ =

1

e2
NµΛ2(z − 1)2(1− z2)N/2 sinNθ (2.47)

solved by

f(r2) =
µ

N

[
2e−Λr2(1− e−Λr2)

]N/2
(2.48)

The second minimization equation reads

1

e2
8N
[
2z′′f+z′f ′

]
=

1

e2
4µΛ

[
2(z−1)(1−z2)N/2−Nz(z−1)2(1−z2)N/2−1

]
(2.49)

It is straightforward to check that this equation is indeed satisfied by the pertur-

bative solution eq.(2.48) and z(r) given by eq.(2.41).

Calculating the longitudinal electric field corresponding to this solution we

find

F 03 = −4Λe−Λr2
[
1 + µ

(
2e−Λr2(1− e−Λr2)

)N/2
cosNθ

]
(2.50)

The electric field is concentrated within the radius Λ1/2 in the transverse plane,

with the ZN invariant perturbation providing a slight angular modulation, as

expected.
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The General Solution

Let us now consider the minimization equations beyond perturbation theory and

beyond the simple ansatz of the previos subsection. Minimization of the energy

functional eq.(2.45) gives the following equations:

1

e2
εij∂jχ∂iF =

∂U

∂z

1

e2
εij∂jz∂iF = −∂U

∂χ
(2.51)

where

F ≡ 1

2
F 03 = εij∂iz∂jχ (2.52)

and U is the potential energy in eq.(2.45).

Multiplying the first equation by ∂kz, the second by ∂kχ and subtracting,

we find:

1

2e2
∂k(F

2) = ∂kU (2.53)

For any finite energy configuration the electric field vanishes at infinity. Since

the potential U appearing in eq.(2.45) also vanishes at infinity, the integration

constant needed to integrate eq.(2.53) is trivial and we find

F 2 = 2e2U ; F =
√

2e2U (2.54)

To solve the equation it is convenient to use the coordinates (τ = r2, θ):

∂τz∂θχ− ∂θz∂τχ =

√
1

2
e2U (2.55)
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This equation obviously has many solutions. The infinite degeneracy follows from

a symmetry of the energy functional eq.(2.45). Consider a transformation

(z(x), χ(x))→ (z(x′), χ(x′));
∂(x′1, x′2)

∂(x1, x2)
= 1 (2.56)

Such transformations form the group of area preserving diffeomorphisms on a

plane SDiff(R2). Note that it is a diffeomorphism transformation on the co-

ordinate space rather than on the field space, and thus is very different from

Sdiff(2), which we discussed in the previous section. This transformation is

clearly a symmetry of the energy functional eq.(2.45). Thus, starting from any

string solution one can generate an infinite number of degenerate solutions with

the help of SDiff(R2) transformations. Note that since the longitudinal electric

field is itself invariant under eq.(2.56), all these solutions have the same electric

field profile.

We will discuss here two such solutions. Let us look for solution with a

prescribed and simple dependence of χ on the angle: χ = θ. Eq.(2.55) then

becomes an equation for z:

∂τz =

√
1

2
e2U =

√
Λ2(z − 1)2

[
1− 2µ(1− z2)N/2 cosNθ

]
(2.57)

The dependence on θ here is parametric, and so for every value of θ it is solved

by

τ =

∫ z(τ)

−1

dz
1√

Λ2(z − 1)2
[
1− 2µ(1− z2)N/2 cosNθ

] (2.58)
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The solution has the correct asymptotics, since as τ → ∞ the function z has to

approach unity for the RHS to diverge. In fact it is easy to find the large distance

asymptotics of the solution. When z is close to unity, we can neglect the term

proportional to µ in the denominator, and for the IR asymptotics we have

τ =

∫ z(τ)

−1

dz
1√

Λ2(z − 1)2
(2.59)

which is solved by

z(τ →∞) = 1− 2e−Λτ (2.60)

This is the same as eq.(2.41), showing that the IR asymptotics of the string

solution is unaffected by the ZN perturbation.

Let us now consider a solution where z only has radial dependence. In this

case, we have:

∂τz∂θχ =

√
Λ2(z − 1)2

[
1− 2µ(1− z2)N/2 cosNχ

]
(2.61)

This can be formally solved for θ at fixed r:

θ =

∫ χ(r,θ)

0

z′dχ√
Λ2(z − 1)2

[
1− 2µ(1− z2)N/2 cosNχ

] (2.62)

The right hand side can be expressed in terms of elliptic integrals:

θ =
2

N

z′√
Λ2(z − 1)2(1− 2µ(1− z2)N/2)

F (
Nχ

2
,

4µ(1− z2)N/2

2µ(1− z2)N/2 − 1
) (2.63)
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where F (φ,m) is the incomplete elliptic integral of the first kind:

F (φ,m) =

∫ φ

0

(1−m sin θ2)−1/2dθ (2.64)

The solution has to satisfy the boundary condition

χ(θ + 2π) = χ(θ) + 2π (2.65)

Imposing this condition gives the equation for the radial dependence of

z. Using the relation F (kπ
2
,m) = kK(m), where K(m) is the complete elliptic

integral of the first kind, we have:

2π =
4z′√

Λ2(z − 1)2(1− 2µ(1− z2)N/2)
K(

4µ(1− z2)N/2

2µ(1− z2)N/2 − 1
) (2.66)

One can easily check, that in the infrared for z → 1 the equation reduces to

z′ = Λ(1− z) (2.67)

and thus has the same asymptotics as in eq.(2.41).

2.2.4 Discussion

In this section we tried to follow the template of 2+1 dimensions and, based on a

couple of simple requirements “guess” a scalar theory which could be a candidate

of the effective theory of 3+1 dimensional gauge theories. The theory we ended up

with is not entirely satisfactory, but it does have several interesting and intriguing

features.
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In the Abelian limit it has a large global symmetry group, which is sponta-

neously broken by lowest energy classical solutions. This symmetry is not reflected

in the observables which we tentatively identified with the observables of QED.

This is similar to 2+1 dimensions, where the electromagnetic field was invariant

under the magnetic U(1) symmetry which acted nontrivially on the vortex field.

In our 3+1 dimensional model the electromagnetic field is also invariant under

the action of the (large) global symmetry group Sdiff(2) which is nontrivially

represented on the effective scalar fields.

Just like in 2+1 dimensions, this global symmetry is broken by the lowest

energy configurations. However, the situation here is more complicated. Whereas

in 2+1 dimensions the symmetry breaking pattern is the standard one, in our 3+1

dimensional model the space of vacuum configurations is very large. It includes

field configurations that have nontrivial spatial dependence, and thus breaks trans-

lational invariance in addition to the global Sdiff(2) symmetry. In fact, it could

well be that classical analysis fails in this model quite badly. Many of the classical

vacua differ from each other only in finite region of space. Generically in such a

case one expects that upon quantization these configurations become connected

by tunneling transitions of finite probability. Thus it is natural to expect that the

quantum portrait of moduli space is significantly different from the classical one.

We will address some of the issues of the Abelian limit in the next section.

There, it will be shown that is it possible to modify the action of this section
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in such a way that, the new action will be equivalent to free electrodynamics

without vectors. Curiously enough, this modification promotes the large global

symmetry group of this section into a global gauge symmetry which is a new

feature compared to 2+1 dimensional models.

Upon introduction of the symmetry breaking perturbation, the model pro-

vides a simple classical description of confinement similarly to the 2+1 dimensional

case. However here also there are some peculiarity. In particular, string solutions

are infinitely degenerate, as static energy for configurations which depend only on

two coordinates has an additional diffeomorphism invariance. This is a different

invariance than in the Abelian limit, as it involves diffeomorphism transforma-

tions in coordinate space rather than in field space. Nevertheless it results in

degeneracy of the solutions, although all such solutions yield the same electric

field. In the sense of electric field distributions, the solution seems to be unique.

This again begs the question about the behavior of such a string in a quantum

theory, since it carries a large entropy associated with large degeneracy.

We note that the string degeneracy is lifted if one adds the standard kinetic

term for the O(3) sigma model fields, ∂µφa∂µφ
a. Addition of such a term also

makes our model identical with the one proposed by Faddeev and Niemi in [20] as

an effective theory of QCD. Interestingly, the picture we suggest is quite distinct

from and complementary to that of [20]. Whereas the authors of [20] concentrated

on closed string solutions supposedly representing glueballs, our picture is that of
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open strings, with the endpoints corresponding to “constituent gluons” like in 2+1

dimensions [17], [22]. The stability of closed strings in the Faddeev-Niemi model

is achieved due to nontrivial twisting of the phase of the scalar field along the

string. Open strings on the other hand, do not require any twist and in principle

can break into shorter strings similarly to QCD. The approximate stability of

relatively long strings must be due to dynamical properties of the theory which

should make the endpoints sufficiently heavy [23].

Finally we note that with the standard kinetic term our model becomes

very similar to CP 1 model, which has been recently discussed in the literature in

relation to effective models of confinement [24].

2.3 Photons without Vector Fields

In the previous section we constructed an effective theory of scalar fields in 3+1

dimensions with certain features that could potentially mimic the low energy

limit of gluodynamics. Although the main aim of this construction was to explore

possible low energy representation of non-Abelian theories, a certain limit of the

construction should have encompassed an Abelian gauge theory, and its simplest

limit - the theory of a free photon.

The construction of section 2.2, despite having some useful features failed

to describe exactly this limit. In this section we modify action and demonstrate

that this new model is exactly equivalent to a theory of the free photon.
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Clearly, the Abelian limit of section 2.2 failed to describe a free photon

primarily because the magnetic field is not required to be divergenceless ∂iBi 6= 0.

To rectify this problem, we now consider the following setup

L =
1

4
FµνF

µν = −1

2
( ~E2 − ~B2) (2.68)

F µν = gεµναβ[εabcφa∂αφb∂βφc + (n · ∂)nα∂βΦ] (2.69)

where n = (1, 0, 0, 0) is a timelike unit vector and Φ is an additional scalar field 2.

The presence of an explicit timelike vector seems to render the model non

Lorentz invariant. However, as we will see below this is not quite the case. The

model does possess a Lorentz invariant superselection sector, and it is this sector

that is equivalent to QED.

In this section we discuss how this modification changes the model in the

Abelian limit. We will show that the theory has the same canonical structure as

free electrodynamics. This includes the commutation relations between “electric”

and “magnetic” fields as well as the Hamiltonian. The model is therefore equiv-

alent to a theory of a free photon, even though it is not formulated in terms of

the vector potential. We also discuss the action of Lorentz transformations on the

basic degrees of freedom of the model. We show explicitly that the fields φi are

not covariant scalar fields, but rather have an “anomalous” term in their Lorentz

2 A somewhat similar model, but with a dual interpretation was considered in [26]
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transformation law. With this modification we show that the model is indeed

Lorentz invariant.

2.3.1 Equation of Motion and Canonical Structure

Equations of Motion

In terms of the fields of previous sections (equation 2.14) and Φ, the electromag-

netic field is:

F µν = εµναβ[−2∂βχ∂αz + nα∂β∂0Φ] (2.70)

The modification does not affect the electric field:

Ei = 2εijk∂jz∂kχ, (2.71)

but now the magnetic field is:

Bk = [2(∂kχ∂0z − ∂0χ∂kz)− ∂k∂0Φ] (2.72)

The Lagrangian equations of motion that follow from the Lagrangian eq.(2.68)

are

∂0∂k
[
Fijε

ij0k
]

= 0 = ∂0∂kBk (2.73)

∂βχ∂α(Fµνε
µναβ) = 0 = ∂kχ∂α(Fµνε

µναk) = ∂kχ(∂0Bk + (∂ × E)k) (2.74)
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∂βz∂α(Fµνε
µναβ) = 0 = ∂kz∂α(Fµνε

µναk) = ∂kz(∂0Bk + (∂ × E)k) (2.75)

Eq.(2.73) is a local conservation equation of a “magnetic charge density”

∂kBk. It ensures that the Hilbert space of the theory is divided into “super-

selection sectors” with fixed value of the magnetic charge density. In order to

preserve translational invariance we limit ourselves to the sector with ∂kBk = 0.

Our considerations in the rest of this chapter pertain to this super-selection sector

alone.

Using this constraint on the magnetic field, equations eq.(2.74) and eq.(2.75)

can be inverted, with the result3

∂0Bk + (∂ × E)k = 0 (2.76)

Recall that with the field strength components given by eq.(3.102), the

equation

∂µF
µν = 0 (2.77)

is satisfied identically. We thus have the full set of Maxwell’s equations.

3 Strictly speaking there is an ambiguity in the inversion of eqs.(2.74,2.75). The general

solution is ∂0Bk + (∂ × E)k = αEk with an arbitrary constant α. However, given that B and

∂ × E are pseudo vectors while E is a vector, a non vanishing value of α would violate parity.

Requiring parity invariance of the equations resolves the ambiguity and sets α = 0.



43

The Hamiltonian.

We now demonstrate that the Hamiltonian and the canonical commutation re-

lations of the electromagnetic fields in our model are identical to those in pure

QED.

The canonical momenta can be calculated from equation (3.102) as :

pz =
δL

δ∂0z
= Fijε

ij0k∂kχ = 2Bk∂kχ = 2∂kχ[2(∂kχ∂0z − ∂0χ∂kz)− ∂k∂0Φ] (2.78)

pχ =
δL

δ∂0χ
= Fijε

ijk0∂kz = −2Bk∂kz = −2∂kz[2(∂kχ∂0z − ∂0χ∂kz)− ∂k∂0Φ]

(2.79)

pΦ =
δL

δ∂0Φ
=

1

2
∂k(Fijε

ij0k) = ∂kBk = ∂k[2(∂kχ∂0z − ∂0χ∂kz)− ∂k∂0Φ] (2.80)

It is a straightforward matter to express the time derivative of χ and z as:

χ̇ =
1

E2
[pz(zχ) + pχχ

2 + εijkΦ̇iEjχk] (2.81)

ż =
1

E2
[pzz

2 + pχ(zχ) + εijkΦ̇iEjzk] (2.82)

The time derivative of Φ is related to canonical momenta via:

pΦ = ∂k

[
1

E2
εklmEl (pzzm + pχχm)− 1

E2
EkEiΦ̇i

]
(2.83)
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or in terms of a “vector potential”

Ak =
1

E2
εklmEl (pzzm + pχχm) (2.84)

as

pΦ = ∂k

(
Ak − ÊkÊiΦ̇i

)
(2.85)

The Hamiltonian is then calculated as:

H =

∫
d3x

[
pz ż + pχχ̇+ pΦΦ̇− L

]
=

∫
d3x

1

2

(
E2 +B2

)
(2.86)

where we have neglected a boundary term
∫
d3x∂k

(
BkΦ̇

)
.

Canonical structure

To show that our model is equivalent to QED we need to make sure that the

canonical commutation relations of Ei and Bi are identical in the two theories.

First off all, since all components of the electric field in our model are func-

tions only of coordinates and not canonical momenta, they commute with each

other

[Ei(x), Ej(y)] = 0 (2.87)

Our next goal is to calculate the commutator between electric and magnetic

field. In order to do that, we set pΦ = 0, as we are only interested in this super

selection sector of the theory. Then, eq.(2.85) becomes
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∂kAk
E

= Êk∂k

(
ÊiΦ̇i

E

)
(2.88)

where we have used ∂kEk = 0.

The formal solution of this equation can be obtained as

ÊiΦ̇i = E(x)

∫ x

−∞
dlC

∂kAk
E

(2.89)

where the integral is along the contour C which starts at x and goes to infinity

(boundary of space). The contour is everywhere parallel to the direction of the

electric field.

Using the definition, we have:

Bk = Ak − Ek
∫ x

−∞
dlC

∂mAm
E

(2.90)

As an intermediate step for the calculation of the commutator [E,B] we

consider

[Ei(x), Ak(y)] = 2i
El(y)

E2(y)
εiabεklm [∂xaδ(x− y)χb(x)zm(y) + ∂xb δ(x− y)za(x)χm(y)]

= 2i
El(y)

E2(y)
εiabεklm∂

x
aδ(x− y)[χb(y)zm(y)− zb(y)χm(y)]

= iÊl(y)Êc(y)εiabεklmεcmb∂
x
aδ(x− y)

= i
[
εiak − Êb(y)Êk(y)εiab

]
∂xaδ(x− y)

(2.91)



46

Using this, we can calculate

[Ei(x), Bk(y)] = [Ei(x), Ak(y)]− Ek(y)

∫ y

−∞
dlC

∂tm [Ei(x), Am(t)]

E(t)

= [Ei(x), Ak(y)]

− Ek(y)

∫ y

−∞
dlC

1

E(t)
∂tm

[(
εiam − Êb(t)Êm(t)εiab

)
∂xaδ(x− t)

]
= [Ei(x), Ak(y)] + Ek(y)

∫ y

∞
dlCÊm(t)∂tm

(
Êb(t)

E(t)
εiab∂

x
aδ(x− t)

)

= iεiak∂
x
aδ(x− y)

(2.92)

where we have used the fact that the integration contour C is defined to run

in the direction of electric field, and have assumed that the fields decrease fast

enough at the boundary.

The commutator eq.(2.92) coincides with the corresponding commutator in

QED.

We now turn to the commutator of components of magnetic fields.

It is straightforward to show that [Bi(x), Ba(y)] = 0 as long as the curve

Cx that defines Bi(x) in eq.(2.90) does not contain the point y, and Cy does

not contain x. When this condition is not met, the direct calculation of the

commutator is not straightforward. Instead of attempting it, we take an indirect

way. A set of relations that involve the commutator in question are easily obtained.
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Consider for instance

[Bi(x)∂iχ(x), Bj(y)∂jz(y)] = [pz(x), pχ(y)] = 0 (2.93)

Trivially:

Bi(x)∂jz(y)[∂iχ(x), Bj(y)] +Bj(y)∂iχ(x)[Bi(x), ∂jz(y)]

+ ∂iχ(x)∂jz(y)[Bi(x), Bj(y)]

=

(
Bi(x)∂jz(y)∂

(x)
i

∂Aj(y)

∂pχ(x)
−Bj(y)∂iχ(x)∂

(y)
j

∂Ai(x)

∂pz(y)

)
+ ∂iχ(x)∂jz(y)[Bi(x), Bj(y)]

= (Bi(y)∂
(x)
i δ(x− y) +Bi(x)∂

(y)
i δ(x− y)) + ∂iχ(x)∂jz(y)[Bi(x), Bj(y)]

= ∂iχ(x)∂jz(y)[Bi(x), Bj(y)] = 0 (2.94)

Here we used the fact that Ekzk = Ekχk = 0 and the constraint ∂iBi = 0.

Similarly

∂iz(x)∂jz(y)[Bi(x), Bj(y)] = ∂iχ(x)∂jχ(y)[Bi(x), Bj(y)] = 0 (2.95)

And by ∂kBk = 0, we have:

∂iz(x)∂yj [Bi(x), Bj(y)] = ∂iχ(x)∂yj [Bi(x), Bj(y)] = ∂xi ∂
y
j [Bi(x), Bj(y)] = 0 (2.96)

Thus the commutator matrix Mij(x, y) ≡ [Bi(x), Bj(y)], antisymmetric under the

exchange (i, x)↔ (j, y) satisfies the set of equations eqs.(2.94-2.96). The general

solution for these equations is given by

Mij(x, y) = Ei(x)Fj(y)− Ej(y)Fi(x) (2.97)
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where Fi(x) is an arbitrary function. However, we have already established that

if x does not belong to Cy and y does not belong to Cx, then Mij(x, y) = 0. This

unambiguously fixes Fi(x) = 0, so that we have:

[Bi(x), Bj(y)] = 0 (2.98)

for all x, y.

2.3.2 Lorentz Transformations of the Fields

The final point we address is the Lorentz transformation properties of the fields

z and χ. Since the electric and magnetic field are covariant components of the

Lorentz tensor, it is clear that z and χ cannot be covariant scalar fields. The

transformations of z and χ under rotations are the same as those of covariant

fields, and we will not deal with those here.

Let us parametrize the infinitesimal Lorentz transformation properties of

these fields in the following way:

z(x)→ z(Λ−1x) = (1 + β∆)z(x) + a

χ(x)→ χ(Λ−1x) = (1 + β∆)χ(x) + b

Θ(x) ≡ ∂0Φ→ Θ(Λ−1x) = Θ(x) + c

(2.99)

Here β is the boost parameter and ∆ ≡ ωµνx
ν∂µ with ωµν - an antisymmetric

generator of Lorentz transformation. In particular for a boost in the direction of
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a unit vector n̂, ωi0 = n̂i. The noncanonical terms a, b and c are to be determined

such that F µν transforms as a tensor.

For simplicity, let us consider explicitly a boost transformation in the first

direction, n̂ = (1, 0, 0). The transformation of the components of the field strength

tensor are

E2(x)→ E2(Λ−1x)− βB3(Λ−1x) (2.100)

on the other hand, writing this in terms of z, χ and Θ we have:

E2(x) = 2[∂3z(x)∂1χ(x)− ∂1z(x)∂3(x)]

→ 2[∂3z(Λ−1x)∂1χ(Λ−1x)− ∂1z(Λ−1x)∂3(Λ−1x)]

(2.101)

Equating the two we obtain:

−β∂3Θ + 2[∂3z∂1b+ ∂3a∂1χ− ∂1z∂3b− ∂1a∂3χ] = 0 (2.102)

Similarly by considering the transformation of E1 we obtain

2(∂2z∂3b+ ∂2a∂3χ− ∂3z∂2b− ∂3a∂2χ) = 0 (2.103)

and for E3:

β∂2Θ + 2[∂1z∂2b+ ∂1a∂2χ− ∂2z∂1b− ∂2a∂1χ] = 0 (2.104)

Defining for convenience fi = 2(a∂iχ − b∂iz), and ui = (0, β∂3Θ,−β∂2Θ)

the above equations can be written as

εijk∂jfk = ui (2.105)
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The general solution for f is:

fi = −εijk∂juk
∂2

+ ∂iλ̃

= βn̂iΘ + ∂iλ

(2.106)

where

λ̃− β n̂i∂i
∂2

Θ = λ (2.107)

where the function λ still has to be determined.

We can now solve eq.(2.106) for a and b by noting that eq.(2.106) is identical

to eq.(2.72) with the substitution

∂0z → a

∂0χ→ b

∂0Φ→ λ

Bk → βΘn̂k

(2.108)

Using eqs (2.81, 2.82) we find:

a =
1

E2
(βΘn̂i + λi)εijkEjzk

b =
1

E2
(βΘn̂i + λi)εijkEjχk

(2.109)

With this, eq. (2.106) yields the equation for λ:

Ei(βΘn̂i + ∂iλ) = 0 (2.110)

from which we get:

λ(x) = −β
∫ x

∞
dlCÊin̂iΘ (2.111)
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where again, C is a curve in the direction of E

To determine the remaining function c we consider the transformation of

the magnetic field For the transformation of the magnetic field, we have:

B1(x)→ B1(Λ−1x)

= 2[∂1χ(Λ−1x)∂0(Λ−1x)− ∂0χ(Λ−1x)∂1z(Λ−1x)]− ∂1Θ(Λ−1x)

(2.112)

which yields

2[∂1χ∂0a+ ∂1b∂0z − ∂0χ∂1a− ∂0b∂1z]− ∂1c+ β∆∂1Θ = 0 (2.113)

Similarly the transformation of B2 and B3 yields

2[∂2χ∂0a+ ∂0z∂2b− ∂0χ∂2a− ∂2z∂0b]− ∂2c+ β∆∂2Θ = 0

2[∂3χ∂0a+ ∂0z∂3b− ∂0χ∂3b− ∂3z∂0b]− ∂3c+ β∆∂3Θ = 0

(2.114)

These can be written a single vector equation

∂0fi − ∂if0 − ∂ic+ β∆∂iΘ = 0 (2.115)

Using eq. (2.106) this can be written as:

∂i[∂0λ− f0 − c+ β∆Θ] = 0 (2.116)

yielding

c = 2(a∂0χ− b∂0z)− ∂0λ− β∆Θ

=β

[
2

E2
εijkEj(∂0χzk − ∂0zχk)

[
Θn̂i − ∂i

∫ x

∞
dlCÊln̂lΘ

]
+ ∂0

∫ x

∞
dlCÊin̂iΘ−∆Θ

]
(2.117)
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Thus we find that the fields z, χ and Φ under Lorentz boost transform

according to eq.(2.99) with a,b,c given in equations (2.109), (3.107) and (3.112).

2.3.3 Discussion

In this section, we have amended the model suggested in section 2.2 as a candidate

for effective description of a gauge theory. We have considered only the Abelian

limit in which the model is equivalent to a theory of a free massless photon. We

have proven this equivalence by considering the canonical structure of the theory.

We have also shown that the basic fields of our model have interesting Lorentz

transformation properties.

We note that the modification discussed here also solves a certain puzzle

posed in section 2.2. Namely, the global symmetry generated by

CF =

∫
d3x

[
pz
∂G[z, χ]

∂χ
− pχ

∂G[z, χ]

∂z

]
(2.118)

for an arbitrary function of two variablesG[z, χ]. These transformations constitute

a group of area preserving diffeomorphisms on a sphere. The electric and magnetic

fields were invariant under the action of this group. That in fact suggested that

the theory had some degrees of freedom in addition to the electrodynamic ones,

since the action of the transformation generated by eq.(2.118) on the full phase

space of the theory was nontrivial. However now the direct consequence of eqs.

(2.78),(2.79) and (2.80), is that the generator of this transformation vanishes,

CF = 0 (2.119)
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and thus there are no physical degrees of freedom that transform nontrivially

under eq.(2.118). Thus in the present model the group of (global) diffeomorphisms

Sdiff(S2) is in fact a global gauge symmetry, that is the states are invariant under

the action of CF , and what used to be extra degrees of freedom in section 2.2 now

becomes unphysical “gauge” coordinate. This ensures that electric and magnetic

fields are the only physical degrees of freedom.

Since here we are dealing with the theory of a free photon, the charged states

are not present. It should be however straightforward to extend this discussion

to include electrically charged states. Just like in section 2.2 we should lift the

constraint of constant length of the field φa, and instead allow dynamics of the

modulus φ2. This will regulate the energy of the charged states in the UV and

will make it finite. Since the configuration space of the model is SO(3)× R, and

the SO(3) symmetry is broken to O(2), the moduli space should have nontriv-

ial homotopy group Π2(M) = Z, and the relevant topological charge should be

identifiable with the electric charge4.

The next set of questions to be addressed is how to move in this theory to

the non-Abelian regime. According to the logic of section 2.2 we need to find a

perturbation that breaks the global symmetries of the model and through this

breaking generates linear potential between the charges. The question one has to

4 There may be some subtlety in this argument related to the fact that the global gauge group

Sdiff(S2) has to be modded out. However, since the gauge transformation is global, we do not

anticipate any problems.



54

address, does this perturbation have to preserve the Sdiff(S2) gauge symmetry,

or should it break it explicitly. This global gauge symmetry is a new element

compared to 2+1 dimensions [17], and we do not have any guidance from the 2+1

dimensional models. Perhaps one should deal directly with the breaking of the

generalized magnetic symmetry - the symmetry generated by the magnetic flux

[19], [27] in terms of its order parameter - the ’t Hooft loop [15]. These question

will be addressed in future work.



Chapter 3

Unitarity

The physics of systems with ghosts has recently attracted renewed attention [28].

The most interest in these systems is in connection with the theories of gravity.

One strong motivation for this is the discovery of cosmic acceleration [29]

and the associated need for a non-vanishing cosmological constant, which has no

natural explanation within general relativity. One can hope that modifying grav-

itational interactions at large distance scales might bring a natural understanding

of this problem. Another problem where modifying gravity can potentially bring

dividends is dark matter. Dark matter has not been observed directly, although

within the standard cosmological model it is necessary to account for the energy

balance of the universe, as well as explaining rotation curves of galaxies.

Conformal gravity is an example of a modified theory of gravity which is po-

tentially interesting in both these contexts [30] [31] [32] [33]. An important aspect

of conformal gravity that singles it our from other higher derivative extensions of

GR is that it is renormalizable by power counting in the ultraviolet [34], and on

this basis has been considered as a candidate for a consistent quantum theory of

55
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gravity.

It is however not clear whether conformal gravity - or any other modified

theory of gravity - is consistent [35]. The problem, like with many higher derivative

theories, is that in perturbation theory it has ghost modes - the modes whose

kinetic energy is negative [36]. This is usually considered to be a hindrance for

a physical theory. Indeed an absence of a stable vacuum (lowest energy) state is

disconcerting and is likely to lead to an instability, whereby the evolution extracts

energy from the negative energy modes and pumps it into the positive energy

modes producing a runaway instability.

As long as interactions between the field modes are neglected, the wrong

sign of kinetic energy is not a problem as such. Since in a free approximation

any field theory has infinite number of conserved quantities, the classical motion

of such a system is bounded. All the oscillators simply oscillate independently

of each other, and the sign of the energy for each one is a matter of convention.

However, once interactions between the modes are turned on, one generally ex-

pects that the classical motion becomes ergodic, and samples all available phase

space. If the total energy is not bounded from below, this is expected to lead

to classical instability with positive and negative contributions to energy growing

without bound. Sometimes the ghosts are said to violate unitarity of a quantum

theory. As we will explain in section 3.1, this is simply another way of stating the

same problem. In such a quantum system time evolution evolves a normalizable
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quantum state into a state which has support only for “infinite” values of the field,

thereby “violating unitarity”. A classical theory with such behavior cannot yield

a consistent quantum field theory upon quantization.

Despite all the drawbacks of a theory with ghosts, the attractive features of

the modified theories of gravity prompted attempts to solve this problem. One

approach in conformal gravity attempts to separate the ghost modes from the pos-

itive norm gravitons and ban their propagation “by hand” [28]. Another attempt

is to quantize the theory using a nonstandard definition of a quantum mechanical

norm [37], [38] following a more general program of quantizing PT invariant but

non hermitian Hamiltonians [39]. In a free limit this is essentially equivalent to

treating the ghost modes as purely imaginary, which flips the sign of the ghost

part of the Hamiltonian.

Such attempts were not made only for conformal gravity, but also for the

massive gravity: Much effort has also been spent to understand whether the ghosts

in this theory can be consistently decoupled [40]. On the other hand it has been

also convincingly argued recently that one does not need to decouple the ghost,

since nonperturbatively the theory cures itself and the full nonlinear Hamiltonian

of spontaneously broken gravity is bounded from below [41].

On the other hand, the instability in question may not be necessarily a fatal

flaw. This is especially so in a theory of gravity, which governs the evolution

of the universe and thus never actually relaxes to its ground state. Thus the
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nonexistence of a ground state in gravity may be just a way of life. In particular

it has been suggested that a negative pressure due to ghosts may be a cause of

the cosmological acceleration [42]. It has been argued that the time scale in which

instability develops is way too short in theories which contain ghosts in the matter

sector [43]. We are unaware however of a similar analysis of gravitational ghosts

themselves, that is the ghost partners of the gravitons that arise in conformal

gravity: the rapid decay of the vacuum discussed in [43] may be preventable if the

ghost coupling to gravitons is nonlocal [44]. It is not obvious therefore that the

last word on viability of theories with ghosts has been uttered yet.

Our aim in this chapter is first to discuss and explain important properties

of systems with ghost by using the simplest such theory in section 3.1: The Pais-

Uhlenbeck oscillator. We will start section 3.1.1 by discussing the Hamiltonian

formalism. In section 3.1.2, we will investigate a limit of the model which is

most relevant to conformal gravity. In section 3.1.3 we discusss the classical and

quantum stability of the model and finally in section 3.1.4 we argue by analytical

and numerical methodsthat presence of an interaction does not necessarily lead to

an instability. Section 3.1.5 consists of the lessons learned from this simple model.

Section 3.2 is an investigation of the stability of conformal gravity. We aim

to see if the ghosts degrees of freedom could potentially “fix” themselves in the

interacting theory. Since the full theory is extremely complicated, we introduce

a simplified approximation in section 3.2.1. Section 3.2.2 is the analysis of the
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equations of motion. section 3.2.3 is the discussion of rather unexpected fate of

ghost degrees of freedom in our approximation.

3.1 Some Comments on Ghosts and Unitarity: The Pais-Uhlenbeck

Oscillator Revisited.

The purpose of this section is rather modest and pedagogical. The potential inter-

est notwithstanding, theories with ghosts are still considered somewhat esoteric

and are not frequently discussed in particle physics literature. We aim to discuss

pedagogically the simplest example of a theory with ghosts - the Pais-Uhlenbeck

oscillator [45]. Our goal is to explicitly demonstrate in this simple framework the

meaning of some rather paradoxical notions that are sometimes used in the con-

text of theories with ghosts, like negative norm states and violation of unitarity

in theories with ostensibly perfectly hermitian Hamiltonian. We also demonstrate

explicitly by solving the time dependent evolution in this theory how the soft UV

behavior arises in dynamical context.

We stress that the Pais-Uhlenbeck oscillator is in fact a unitary theory even

though it possesses a ghost mode, and also give an example of a theory of interact-

ing “particle” and “ghost” modes which is nevertheless unitary on the quantum

level. All the above statements apply to quantum mechanical systems with the

standard Dirac norm, as we do not recourse to a non standard quantization ap-

proach a la [38].
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The Pais - Uhlenbeck oscillator was the subject of several papers in recent

years, and its solution is well known [37,46,47]. Nevertheless we feel that our

simple and straightforward approach to the problem is illuminating and is worth

recording.

3.1.1 Pais-Uhlenbeck Oscillator

The Pais-Uhlenbeck system is the theory of a single degree of freedom which

satisfies a fourth order equation of motion. It is defined by the Lagrangian

L = (
d2

dt2
z + ω2

1z)(
d2

dt2
z + ω2

2z) (3.1)

For definiteness we assume ω1 > ω2. Our aim is to study the Hamiltonian dynam-

ics with the view of quantum mechanical system, since a discussion of evolution

of a wave function is most convenient in the Hamiltonian formalism. Although

there exist a general formalism for calculating a Hamiltonian of four derivative

systems, developed by Ostragradsky [48], we find it more straightforward in the

context of this particular model to introduce a pair of variables

X =
d2

dt2
z + ω2

1z; Y =
d2

dt2
z + ω2

2z (3.2)

and consider them as independent coordinates. The rationale of this choice is,

that the fourth order equation for the variable z

(
d2

dt2
+ ω2

1

)(
d2

dt2
+ ω2

2

)
z = 0 (3.3)
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can be written as a pair of second order equations for X and Y

d2

dt2
X + ω2

2X = 0;
d2

dt2
Y + ω2

1Y = 0 (3.4)

To find the Hamiltonian we introduce the Lagrange multipliers for the constraints

eq.(3.2)

L = XY + α(
d2

dt2
z + ω1z −X) + β(

d2

dt2
z + ω2z − Y ) (3.5)

Canonical momenta are calculated in the standard fashion pi = ∂L/∂ẋi. This

definition leads to the following constraints

PX = PY = 0; pα = pβ = −ż; pz = −α̇− β̇ (3.6)

The Hamiltonian, calculated in the standard way as the Legendre transform of

the Lagrangian is

H = −1

2
(pα + pβ)pz −XY − α(ω2

1z −X)− β(ω2
2z − Y ) (3.7)

Commuting (calculating the Poisson bracket of) H with the primary constraints,

eq.(3.6) we obtain secondary constraints

[H,PX ] = α−Y = 0; [H,PY ] = β−X = 0; [H, pα−pβ] = (ω2
1−ω2

2)z−(X−Y ) = 0

(3.8)

These can be used to express α, β and z in terms of X and Y ,

α = Y ; β = X; z =
X − Y
ω2

1 − ω2
2

(3.9)

The Dirac procedure for constraint systems requires that we use the Dirac brackets

instead of the Poisson brackets to derive equations of motion. The net result of
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switching to the Dirac brackets is clear without a detailed calculation. The new

“commutation relations” are such that the dynamical variables “commute” with

all the constraints. Also, the modification is present only for those variables

whose Poisson bracket with the original constraints does not vanish. Without any

calculation the result in the present case is obvious

pα = πY ; pβ = πX ; pz =
1

2
(ω2

1 − ω2
2)(πX − πY ) (3.10)

with the Dirac brackets

[πi, Xj]D = −δij (3.11)

The Hamiltonian then becomes

H =
1

2
Ω∆[π2

Y − π2
X ] +

ω2
1

2Ω∆
Y 2 − ω2

2

2Ω∆
X2 (3.12)

where we have defined Ω = ω1+ω2

2
; ∆ = ω1 − ω2. Finally rescaling the variables

πx = (Ω∆)1/2πX ; x = (Ω∆)−1/2X, and similarly for y we obtain

H =
1

2
π2
y +

1

2
ω2

1y
2 − 1

2
π2
x −

1

2
ω2

2x
2 (3.13)

In terms of the new variables, the original coordinate z is expressed as

z =
1√

4Ω∆
(x− y) (3.14)

This is a very simple Hamiltonian. It is not bounded either from below nor

from above, but nevertheless it generates a perfectly acceptable evolution. The

two degrees of freedom x and y are decoupled, and classically each one simply
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satisfies a harmonic oscillator equation of motion. Classically there are no runaway

solutions for these equations of motion for an arbitrary initial condition. Quantum

mechanically the system also possesses finite positive norm states which evolve

unitarily with time.

Before turning to the quantum problem, we wish to stress again that we are

not going to discuss nonstandard quantization in the spirit of the one proposed

in Ref. [37]. Our view is that the quantum problem is not defined solely by the

abstract axioms of quantum mechanics, and thus any quantization that preserves

the basic mathematical structure is allowed. On the contrary, we take the view

that the correspondence principle is no less important than the abstract axioms.

In other words, given that the classical problem is defined by the Lagrangian

(eq.3.1) and classically one is interested in the real time evolution of the real

degree of freedom z, the quantum problem must have the same classical limit.

This requires the quantum variable z and all its time derivatives, as well as the

variables x and y defined above, to be Hermitian operators. The standard Dirac

norm, where the matrix elements are calculated by integration over the real values

of x and y, is eminently appropriate, and we will use it throughout this paper.

The quantum norm used in the approach of Ref [37], on the other hand, requires

the time derivative of z to be anti-Hermitian, as explained for example in Ref.

[49], and is not appropriate for our purposes. Thus our aim in this paper is not

to explore alternative options for the quantization of this theory, but rather to
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explain the issues related to ghosts and unitarity in the theory with a standard

Dirac norm.

As we will see below, quantum mechanically the Pais-Uhlenbeck system

possesses finite positive (Dirac) norm states which evolve unitarily with time.

Nevertheless it is commonly said that this quantum theory has negative norm

states. In the next subsection we will clarify what this statement technically

means, and stress that it is not a hindrance for the peaceful existence of a unitary

evolution in this model.

The Negative Face of a Divergent Integral

The Hamiltonian of the Pais-Uhlenbeck system is not bounded from below. This

is unusual and somewhat disturbing, since we normally expect that any open

system will interact with some external degrees of freedom and generally relax to

its ground state by loosing any excess energy to those degrees of freedom. However

if the system is closed, no such loss of energy is possible and unboundedness of

energy from below does not have to be a problem. In particular, in the present case

the two harmonic oscillators do not interact with each other, no energy transfer

from one to another occurs and the evolution is perfectly unitary, provided at the

initial moment in time we start with a state which is localized at finite values of

x and y.

On the other hand, for states with large negative energy (which at finite
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volume are close to the lowest-energy state) the evolution becomes non-unitary.

This is simply due to the fact that these states are localized at very large values

of x, close to the spatial boundary at a finite IR regulator. The probability

stored in a state like this simply “leaks” through the spatial boundary during the

evolution. In the infinite-volume limit these states are non-normalizable, which is

the manifestation of the fact that they are localized at un-physically large values

of the coordinates.

To see this explicitly, let us define creation and annihilation operators in the

standard way

a =

√
ω

2
x+ i

√
1

2ω
πx (3.15)

The Fock vacuum of a is the normalized Gaussian state

a|0〉 = 0; 〈x|0〉 = Ne−
ω
2
x2 (3.16)

This is the state with highest energy in the x-sector.

One can also formally define a state which corresponds to lowest energy

eigenvalue, as the vacuum of a† [46]

a†|Φ〉 = 0; 〈x|Φ〉 = N−e
ω
2
x2 (3.17)

This state is non-normalizable and not physical, since a particle in this state

is localized exclusively at infinity. The probability to find the particle at finite

value of coordinate vanishes, since in the infinite volume limit the normalization

constant N− vanishes faster than exponentially.
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Nevertheless in a certain formal way it corresponds to the lowest energy

state. To see this, write the Hamiltonian for x mode in the standard form

Hx = −ωaa† + E0 (3.18)

Consider a tower of states above |Φ〉 generated by the action of operator a.

H|Φ〉 = E0|Φ〉; H|1〉 ≡ Ha|Φ〉 = E0a|Φ〉 − ωaa†a|Φ〉 = (E0 + ω)|1〉; ... (3.19)

Thus applying operator a increases the energy of the state by ω, and the spectrum

seems to be bounded from below. Another formal argument suggests that at least

some of these states have negative norm. Let us calculate the norm of the “one

particle state”

〈1|1〉 = 〈Φ|a†a|Φ〉 = 〈Φ|aa† − 1|Φ〉 = −〈Φ|Φ〉 (3.20)

Taken literally, this argument suggests that either the “one particle” state or the

“vacuum” state has a negative norm. This is the origin of the usual statement

that the theory has negative norm states.

In fact, of course the norm of both of these states is positive once we regulate

the system by putting it into a finite volume 1. The “vacuum” state is just a

Gaussian which grows at large values of x. Its norm is positive in finite volume,

1 If one assumes that both |Φ〉 and |1〉 in infinite volume belong to some Hilbert space, this

space necessarily contains negative norm states [49]. However, this is certainly not the Hilbert

space with Dirac norm and is not the subject of our discussion
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and diverges (while remaining positive) as the infrared cutoff is removed. The one

particle wave function can be found explicitly

a|Φ〉 =

(√
ω

2
x+

√
1

2ω

d

dx

)
e

ω
2
x2 =

√
2ωxe

ω
2
x2 (3.21)

The norm of this state obviously is also positive, and is even more divergent than

that of the vacuum in large volume. None of the norms is negative. The flaw in

the formal eq.(3.21) is of course precisely the fact that the states in question are

not normalizable. To interpret the expectation value of a†a as the norm of a one

particle state, one needs to act with a† on the bra, which amounts to integration

by parts of the derivative in a†. The integration by parts however is not allowed,

since the wave function grows at infinity. In particular

〈1|1〉 6= |a|Φ〉|2 (3.22)

as one can easily verify by an explicit calculation. In fact the difference between

the two sides of the inequality is infinite. Thus “negative norm” is merely a jargon

which refers to the fact that neither the norm nor matrix element of any reasonable

operator like xn or pn is defined in the states of the form eq.(3.19) due to strong

infrared divergence.

Sometimes the procedure described above is referred to as a “quantization

scheme”, in the sense that the states of the tower eq.(3.19) do not belong to the

Hilbert space of normalizable states. The unitarity in this quantization scheme is

broken exactly for the reason explained above. All the wave functions with finite
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number of “excitations” above the “vacuum” |Φ〉 live on the edge of space. Once

an infrared regulator (which makes the norm finite) is removed the wave functions

vanish everywhere in the bulk. Such states run great risk of disappearing through

the boundary under time evolution.

On the other hand it is clear, that states which are created by the action of

a† on |0〉 are normalizable and their evolution is perfectly unitary. One is normally

interested in the situation when a particle can be detected in the bulk with finite

probability. This physical condition makes the non-normalizable states physically

irrelevant and devoid of interest.

3.1.2 The degenerate case ∆ = 0

A special case of the Pais-Uhlenbeck system is when the two oscillators have the

same frequency, ∆ = 0. In terms of analogy with the W 2 gravity, this case is the

most interesting. In this section we discuss some interesting features of the equal

frequency limit.

The Fate of the Normalized Wave Functions

The limit ∆ = 0 of the previous expressions is a little tricky, since the transforma-

tion between the original variable z and x, y becomes singular. It is therefore not

straightforward to take the limit directly on the level of the Hamiltonian. One

cannot simply drop the terms in the Hamiltonian which naively vanish in the limit
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∆→ 0, since the operators that multiply ∆ may have divergent matrix elements.

To illustrate this, let us first rewrite the Hamiltonian in terms of variables X and

z, avoiding any singular redefinition of variables (here the variable x is defined as

originally: X = d2

dt2
z + ω2z).

H = −1

2
πXπz +X2 − 2(Ω +

1

2
∆)2zX + 2∆Ω(Ω +

1

2
∆)2z2 − 1

2
∆Ωπ2

X (3.23)

Suppose we naively drop the last two terms in eq.(3.23), which formally

vanish in the limit ∆→ 0.

H0 = −1

2
πXπz +X2 − 2(Ω +

1

2
∆)2zX (3.24)

Let us now look for Gaussian eigenstates of the resulting Hamiltonian. Recall

that at nonzero ∆ we had four Gaussian eigenstates

exp±
{ ω2

2Ω∆
X2 ± ω1

2Ω∆
Y 2
}

= exp±
{

1

ω1 ± ω2

X2 ± 2ω1Ω∆z2 ∓ 2ω1Xz

}
(3.25)

Three of these were non-normalizable and only one was the well behaved normal-

izable state peaked at x, z = 0: The normalizable state is

Ψ = exp−
{

1

∆
X2 + 2ω1Ω∆z2 − 2ω1Xz

}
(3.26)

However if we seek all Gaussian eigenstates of the truncated Hamiltonian eq.(3.24),

we find only two states

exp±
{
− 1

2Ω
(X − 2Ω2z)2 + 2Ω3z2

}
(3.27)
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Evidently none of these two states is normalizable. These two Gaussian states

are indeed obtained in the limit ∆ → 0 from two of the states eq.(3.25). Thus

we seem to find no normalizable Gaussian eigenstates of a quadratic Hamiltonian

eq.(3.24), even though for any finite ∆ a normalizable Gaussian eigenstate exists.

This means that the Hamiltonian eq.(3.24) is not diagonalizable, which indeed

can be formally proven [38], [46].

This conclusion is however a little hasty, as it is based on neglecting the last

two terms in eq.(3.23). However, even though these terms are multiplied by ∆,

in order to be able to neglect them, we need to be sure that they have vanishing

matrix elements in the limit ∆ → 0. It is easy to see that this is not the case

here. Indeed, in the normalizable state eq.(3.26) we have

〈z2〉 ∼ 〈π2
X〉 ∼

1

∆
(3.28)

so that in fact the last two terms in eq.(3.23) are finite in the limit ∆ → 0 and

therefore cannot be simply discarded.

The normalizable state eq.(3.26) does not disappear without a trace in the

degenerate limit, but rather tends to a delta function of X

Ψ2(X)→ δ(X) (3.29)

The action of the Hamiltonian eq.(3.24) on this state is ambiguous due to the first

term in the Hamiltonian. One does obtain this state unambiguously, however as

the equal frequency limit of eq.(3.26)
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Thus on the normalizable states the auxiliary variable X is frozen at zero,

while the original variable z fluctuates freely with infinite amplitude.

Interestingly, this suggests that in a sense the oscillator looses half of its

degrees of freedom and also becomes “classical”. Recall that the variable X is

essentially the classical equation of motion for half the original modes of z, since

X = d2

dt2
z + ω2z. In the limit ∆ → 0, this quantity is fixed at zero without

fluctuations. On the other hand the coordinate z itself fluctuates without restric-

tion. Thus essentially the quantum system becomes a classical oscillator which

can oscillate with arbitrary amplitude.

Dynamical conformal symmetry

As an interesting aside, we note that at ∆ = 0 the theory dynamically develops a

conformal symmetry, which is spontaneously broken by normalizable states. For

the purpose of this discussion, it is convenient to revert to normalization in which

the Hamiltonian is simplest in the limit ∆→ 0, eq.(3.13). In the equal frequency

limit the Hamiltonian eq.(3.13) is invariant under the following transformation

x→ x cosh t+ y sinh t; y → y cosh t+ x sinh t; z → e−tz (3.30)

It is natural to refer to this symmetry as conformal. This symmetry is not obvi-

ously present in the Lagrangian eq.(3.1). In fact the Lagrangian is multiplied by

a constant under the transformation eq.(3.30). However, as we have seen in the

previous subsection, in the equal frequency limit the dynamics of z is such that
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on normalizable states it is pinned to satisfy X = d2

dt2
z + ω2z = 0. As a result the

Lagrangian vanishes for all physically interesting configurations. Scaling of the

Lagrangian by a finite factor therefore is indeed a “dynamical” symmetry in this

limit.

Interestingly this symmetry is spontaneously broken, in the sense that the

normalizable “vacuum”, or in fact any of the normalizable physical states, is not

invariant under it. The wave function of the “lowest energy”, the non-normalizable

eigenstate of the operator a† is indeed invariant under the conformal transforma-

tion:

exp

{
− 1

2Ω

[
x2 − y2

]}
(3.31)

However for the normalizable Gaussian

exp

{
− 1

2Ω

[
x2 + y2

]}
→ exp

{
− 1

2Ω

[
cosh(2t)

[
x2 + y2

]
+ 2 sinh(2t)xy

]}
(3.32)

It is clear that any state whose wave function is localized at finite values of x

and y is necessarily not invariant under the transformation eq.(3.30). Thus the

conformal symmetry is “spontaneously broken” on normalizable states. Since the

representations of conformal group eq.(3.30) are infinitely dimensional, the finite

energy spectrum is infinitely degenerate. This is of course well known and obvious

since adding any number of excitations of the x oscillator and the same number of

excitations of the y oscillator does not change the energy in the degenerate limit

[46,47]. It is nevertheless amusing, that this degeneracy can be understood as a

spontaneous breaking of conformal symmetry.
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Here we wish to add a comment regarding the nature of the spectrum at

∆ = 0. Naively taking ∆ = 0 we have two degenerate harmonic oscillators.

Taking the nth excited state of the y oscillator, ψn(y), and mth state of the x

oscillator, ψm(x), we conclude that the energy eigenvalue is En−m = Ωn−m and

the degeneracy of every level is infinite, corresponding to arbitrary n and fixed

n−m . There is however a subtlety in this argument [47] 2. To find the spectrum

at ∆ → 0 we need to calculate the density of states at small but finite ∆ and

then take the limit ∆ → 0. Keeping ε � ∆ and counting the number of states

in an arbitrarily small interval E to E + ε, we find that it is infinite. To regulate

the calculation we need to cut off in some way the spectrum of each harmonic

oscillator, n, m ≤ κ. For finite κ we find N(E 6= Ωk, ε) ∝ κ∆. We now have

to take the limit ∆ → 0 and κ → ∞. If one takes ∆ → 0 at finite κ first, the

density of states for E 6= Ωk vanishes and one recovers the infinitely degenerate

but discrete spectrum. On the other hand, if one takes κ to scale as κ = L
∆

with L → ∞ last, the spectrum becomes continuous and infinitely degenerate

for any E [44], [50]. What is important to realize, however, is that all the states

with E 6= Ωk are of the form Ψn(x)Ψm(y) with m,n ∝ 1
∆

. Thus in the limit

∆→ 0, only infinitely high excitations of both harmonic oscillators contribute to

the continuous part of the spectrum. These states are localized at “infinite” values

of the variables x and y: 〈x2〉 ∼ 〈y2〉 ∼ 1
∆

. Thus any state initially localized in

2 We thank A. Smilga for pointing this out to us
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a finite volume has zero overlap with these states and will not feel their presence

during the evolution. The situation is even more extreme for the original variable

z, since 〈z2〉 ∼ 1
∆
〈x2〉 ∼ 1

∆2 . We therefore conclude that for the evolution of

physically interesting states, the existence of eigenstates with E 6= Ωk is not

important. In this sense only the discrete (but infinitely degenerate) part of the

spectrum is physical.

3.1.3 Dynamics: Classical vs Quantum

The dynamics of the classical Pais-Uhlenbeck oscillator is identical to that of

two decoupled harmonic oscillators. The variables x and y satisfy the harmonic

oscillator equations of motion, and the fact that the energy of the x-oscillator is

negative is irrelevant, since the energies of each oscillator are separately conserved.

Quantum mechanically, however the situation is very different. Here the

overall sign of energy is reflected in the sign of the phase of the wave function. For

the evolution of states which are initially product wave functions Ψ1(x)Ψ2(y) this

is again unimportant, however it affects strongly the time evolution of “entangled”

states. The simplest calculation where the quantum mechanical importance of the

sign flip for the x-oscillator manifests itself, is the propagator of the z. It is of

course well known, that the UV behavior of the propagator in four derivative

theories is much softer than in theories with ordinary kinetic term. The Pais-

Uhlenbeck oscillator is the simplest example of this kind. Although this is a
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trivial calculation, we present it here for completeness.

The propagator

To calculate the propagator of z we need to calculate the propagator of x and y

separately. For y this is the usual harmonic oscillator calculation.

The y propagator :

The Hamiltonian for the y mode is

H =
1

2
p2 +

1

2
ω1y

2 (3.33)

The annihilation operator a

a =

√
ω1

2
(y +

ip

ω1

) (3.34)

evolves in time according to

a(t) = a(0)e−iω1t (3.35)

For the Feynman propagator:

Gy(t) = < T{y(t)y(0)} >

=
1

2ω1

< Θ(t)[a(t)a†(0) + a†(t)a(0)] + Θ(−t)[a†(0)a(t) + a(0)a†(t)] >

(3.36)

we have

Gy(t) =
1

2ω1

[Θ(t)e−iω1t + Θ(−t)eiω1t] (3.37)
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To perform the Fourier transform, as usual we introduce the regulator which makes

the integral converent for large times

Gy(p) =
1

2ω1

∫
dteipt[Θ(t)e−iω1te−εt + Θ(−t)eiω1teεt] =

i

p2 − ω2
1 + iε

(3.38)

This is the standard result, which upon integration over the frequency p gives the

equal time expectation value in the vacuum

〈y2〉 =

∫
dp

2π
Gy(p) =

1

2ω1

(3.39)

The x propagator :

The propagator of x is equally easy to calculate in the physically relevant “vacuum”-

the highest energy state. The Hamiltonian now is

H = −1

2
p2 − 1

2
ω2x

2 (3.40)

and

a =

√
ω2

2
(x+

ip

ω2

); a(t) = a(0)eiω2t (3.41)

The same calculation as before now gives

Gx(t) ≡ 〈0|T{x(t)x(0)}|0〉 =
1

2ω2

[Θ(t)eiω2t + Θ(−t)e−iω2t] (3.42)

and

Gx(p) =
−i

p2 − ω2
2 − iε

(3.43)

This differs from eq.(3.38) by the overall sign and also by the sign of the regulator

ε. As is easily seen, these two sign changes cancel each other in the calculation of
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equal time quantities. For example

〈0|x2|0〉 =

∫
dp

2π
Gx(p) =

1

2ω2

(3.44)

which is the correct result for the normalizable Gaussian eigenstate of the x os-

cillator.

The z propagator :

Finally combining the results for x and y, and noting that due to the symmetries

of the system the mixed propagator vanishes 〈x(t)y(0)〉 = 0, we obtain

Gz(p) =
1

4Ω∆
[Gy(p) +Gx(p)] =

i

2(p2 − ω2
1)(p2 − ω2

2) + iε
(3.45)

Again, this is the standitard result, showing a softened UV behavior, since the

propagator of z vanishes much faster for high frequencies than that of a harmonic

oscillator. This indicates of course, that the time evolution of z is very smooth

and has a very small high frequency component.

The “propagator” in the unbounded state:

What happens if we try to calculate the propagator of the x oscillator in the

unbounded Gaussian state? Of course, as explained above this calculation is

purely formal, since the integrals over this wave function are divergent. Still,

formally proceeding as before we can define

G−x (t) = 〈Φ|T{x(t)x(0)}|Φ〉 (3.46)

We still use eq.(3.41), but this time it is a† that annihilates the state Φ. We then
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formally obtain:

G−x (t) = − 1

2ω2

[Θ(t)e−iω2t + Θ(−t)eiω2t] (3.47)

and

G−x (p) =
−i

p2 − ω2 + iε
(3.48)

The sign of the regulator ε is now the same as for the positive energy harmonic

oscillator, which is simply the reflection of the fact that the state |Φ〉 is formally

the lowest energy state of the system. However this propagator leads to the same

paradox of negative norm states as discussed in the previous section. Calculating

the equal time expectation value, which should be by definition positive, we find

〈Φ|x2|Φ〉 = − 1

2ω2

(3.49)

This again underscores the point, that non-normalizable states, if manipulated

formally, can be mistaken to have negative norm.

Time evolution: the wave function

It is instructive to see explicitly how the wave function of the system evolves in

time. In particular we would like to see the origin of the smooth UV behavior of

the Pais-Uhlenbeck system in terms of the time evolution of wave functions.

We are mostly interested in the degenerate case ∆ → 0, and will therefore

study time evolution generated by the Hamiltonian

H = −1

2

∂2

∂y2
+

1

2

∂2

∂x2
+

1

2
Ω2y2 − 1

2
Ω2x2. (3.50)
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We want to follow the time dependence of simple quantum averages, like 〈z2(t)〉

and 〈(X(t) + Y (t))2〉. The first observable is the obvious choice, since it is the

fluctuation of the coordinate of the original oscillator, while the second one is the

fluctuation of the second order equation of motion. We will choose an initial state

such that both these operators have sensible (finite) averages.

We are not interested in states which are simple product states of the form

ψ1(x)ψ2(y). As far as the expectation values of all Hermitian operators go, the

evolution of such a product state is identical to that of a state ψ1(x)ψ∗2(y) evolved

with the positive energy harmonic oscillator. We will thus be interested in states

which are not trivial product states in the variables x and y. A simple initial wave

function that satisfies these requirements is

ψ(0) = N exp

{
−1

2

[
∆Ω

ξ2
(x+ y)2 +

1

4Ωτ 2∆
(x− y)2

]}
=

N exp

{
−1

2

[
(
∆Ω

ξ2
+

1

4Ωτ 2∆
)x2 + (

∆Ω

ξ2
+

1

4Ωτ 2∆
)y2 + 2(

∆Ω

ξ2
− 1

4Ωτ 2∆
)xy

]}
.

(3.51)

Note that we have scaled out the dependence on the frequency difference ∆ ex-

plicitly. Strictly speaking for nonvanishing ∆ we also have to keep the frequencies

of the two oscillators in the Hamiltonian different. However the Hamiltonian itself

is smooth in the degenerate limit, and it is only the relation between x, y and z

that involves divergent coefficients. Thus with the appropriate choice of the wave

function we can make z finite also at ∆ → 0. Specifically, for the state eq.(3.51)
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we have

〈z2〉 = τ 2; 〈(X + Y )2〉 = ξ2 (3.52)

Since the evolution is free, a Gaussian wave function preserves its Gaussian shape

at any later time. Thus at any time t we have

ψ(t) = N(t) exp

[
−1

2
A(t)x2 − 1

2
B(t)y2 − C(t)xy

]
. (3.53)

Acting on this wave function with the Hamiltonian we obtain the evolution of the

coefficients

Ȧ = i[A2 − C2 − Ω2]; Ḃ = i[C2 −B2 − Ω2]; Ċ = iC[A−B]. (3.54)

After some algebra this leads to

Ċ = C
Ȧ+ Ḃ

A+B
(3.55)

which is solved by

C(t) = α[A(t) +B(t)] (3.56)

with

α =
C(0)

A(0) +B(0)
(3.57)

Using this result for C(t) in eq.(3.54), and defining A(t) + B(t) ≡ u(t), A(t) −

B(t) = v(t). we have:

u̇ = iuv (3.58)
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v̇ = i[(
1

2
− 2α2)u2 +

1

2
v2 − 2Ω2] (3.59)

with the initial conditions:

u(0) = 2

(
∆Ω

ξ2
+

1

4Ωτ 2∆

)
, v(0) = 0 (3.60)

It is easy to see that the solution has the form

u(t) =
1

f+ + f− cos 2Ωt
, v(t) =

−i2f−Ω sin 2Ωt

f+ + f− cos 2Ωt
(3.61)

where f± are constants determined by the equations of motion and the initial

conditions. After some algebra, for the initial conditions eq.(3.60) we obtain

f± =
∆

Ω
(±1 + Ω2ξ2τ 2)

1

ξ2 + 4Ω2∆2τ 2
(3.62)

and

A(t) =
Ω

2∆

(ξ2 + 4Ω2∆2τ 2)− i2∆(1− Ω2ξ2τ 2) sin 2Ωt

(1− cos 2Ωt) + Ω2ξ2τ 2(1 + cos 2Ωt)
(3.63)

B(t) =
Ω

2∆

(ξ2 + 4Ω2∆2τ 2) + i2∆(1− Ω2ξ2τ 2) sin 2Ωt

(1− cos 2Ωt) + Ω2ξ2τ 2(1 + cos 2Ωt)

C(t) = − Ω

2∆

ξ2 − 4Ω2∆2τ 2

(1− cos 2Ωt) + Ω2ξ2τ 2(1 + cos 2Ωt)

The time dependent probability density can be written as:

ψ†ψ =N2 exp

[
− Ω

2∆
(x+ y)2 4Ω2∆2τ 2

(1− cos 2Ωt) + Ω2ξ2τ 2(1 + cos 2Ωt)

− Ω

2∆
(x− y)2 ξ2

(1− cos 2Ωt) + Ω2ξ2τ 2(1 + cos 2Ωt)

] (3.64)

Thus we find

< z2(t) > =
1

2

[
1

Ω2ξ2
(1− cos 2Ωt) + τ 2(1 + cos 2Ωt)

]
(3.65)

〈(X(t) + Y (t))2〉 =
1

2

[
1

Ω2τ 2
(1− cos 2Ωt) + ξ2(1 + cos 2Ωt)

]
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These expressions are notable for their absence of features. Normally one expects

that if the initial state is very far from the vacuum, the evolution should delocal-

ize it in a short time, so that the amplitude of the fluctuation of the coordinates

should become very large. This is exactly what happens in the standard positive

Hamiltonian harmonic oscillator, as we will demonstrate in the next subsection.

However eq.(3.65) shows that in the Pais-Uhlenbeck system both interesting aver-

ages evolve smoothly in time on the scale determined by the initial state averages.

Clearly, if both τ and ξ are finite, the averages stay finite throughout the evo-

lution. This is despite the fact, that the “vacuum” of the system is such that

τ 2 ∝ 1/∆ → ∞, ξ2 ∝ ∆ → 0, as discussed in the previous section. If we start

the system “close” to its vacuum state, that is with ξ2 ∝ 1/τ 2 ∝ ∆, it is still

true that at all times parametrically the averages are the same, fluctuation with

the amplitude proportional to the initial average. Thus it does not matter, if the

system starts off far from the vacuum, or close to it, the evolution is smooth and

the averages at all times are proportional to those in the initial state.

To underscore that this is very different from the standard harmonic os-

cillator, we perform the same exercise as above for the two decoupled oscillator

systems.
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The baseline: oscillators with positive energy

We now consider time evolution generated by

H = −1

2

∂2

∂y2
− 1

2

∂2

∂x2
+

1

2
Ω2y2 +

1

2
Ω2x2 (3.66)

For a Gaussian wave function eq.(3.53) the evolution of the parameters A(t), B(t)

and C(t) is given by:

Ȧ = i[−C2 − A2 + Ω2]; Ḃ = i[−C2 −B2 + Ω2]; Ċ = −iC(A+B) (3.67)

This is simplified for our initial state where A(t) and B(t) stay equal for all

times:

Ȧ = i[−C2 − A2 + Ω2]; Ċ = −2iAC, (3.68)

with initial conditions given as in 3.51. This is solved by

C =
1

f + g cos (2Ωt+ φ)
; A =

igΩ sin (2Ωt+ φ)

f + g cos (2Ωt+ φ)
(3.69)

provided

f 2 − g2 =
1

Ω2
(3.70)

Imposing the initial conditions,

A(0) =
∆Ω

ξ2
+

1

4Ωτ 2∆
=

igΩ sinφ

2(f + g cosφ)
; C(0) =

∆Ω

ξ2
− 1

4Ωτ 2∆
=

1

f + g cosφ
.

(3.71)
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we find

f =
2∆

Ω

Ω2τ 2ξ2 − 1

4Ω2∆2τ 2 − ξ2
; g sinh Φ = − 1

Ω

4Ω2∆2τ 2 + ξ2

4Ω2∆2τ 2 − ξ2
;

g cosh Φ =2∆
Ω2τ 2ξ2 + 1

4Ω2∆2τ 2 − ξ2

(3.72)

where Φ = iφ. Finally, the solution for our initial conditions is

A(t) = B(t) =
Ω

2∆

(4Ω2∆2τ 2 + ξ2) cos 2Ωt+ i2∆(Ω2τ 2ξ2 + 1) sin 2Ωt

Ω2τ 2ξ2(1 + cos 2Ωt)− (1− cos 2Ωt) + i(2Ω2∆τ 2 + ξ2

2∆
) sin 2Ωt

C(t) =
Ω

2∆

4Ω2∆2τ 2 − ξ2

Ω2τ 2ξ2(1 + cos 2Ωt)− (1− cos 2Ωt) + i(2Ω2∆τ 2 + ξ2

2∆
) sin 2Ωt

(3.73)

For small ∆ we expand these expressions to second nontrivial order

A(t) = B(t) = iΩ tan 2Ωt+
2Ω∆

ξ2

(Ω2τ 2ξ2 − 1) cos 2Ωt+ (Ω2τ 2ξ2 + 1) cos 4Ωt

sin2 2Ωt

C(t) = −i Ω

sin 2Ωt
− 2Ω∆

ξ2

Ω2τ 2ξ2(1 + cos 2Ωt)− (1− cos 2Ωt)

sin2 2Ωt
(3.74)

Generically at arbitrary time we have

Re[A+ C] ∝ Re[A− C] ∝ ∆

sin2 2Ωt
(3.75)

and thus

〈(x− y)2〉 ∝ 〈(x+ y)2〉 ∝ sin2 2Ωt

∆
(3.76)

This is precisely what one normally expects. Our initial state is very far away from

the ground state. It was chosen in such a way that the center of mass coordinate

x + y had large fluctuations, O(1/∆), whereas the relative coordinate x − y had

small fluctuations O(∆). One expects a state like this to expand very quickly
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and become delocalized in all coordinates. Indeed eq.(3.76) displays precisely this

feature: the relative coordinate fluctuates with amplitude of order 1/∆ almost

all the time, except for a very short time interval δt ∝ ∆ within every period of

evolution.

Thus indeed, we see that the time evolution of the Pais - Uhlenbeck oscil-

lator is smoother than that of a system of decoupled harmonic oscillators, in the

sense that the averages in the Pais-Uhlenbeck case fluctuate on the scale given

by the initial state and do not develop additional large variations throughout the

evolution.

3.1.4 A simple unitary interaction

We have seen that the quantum evolution of the Pais-Uhlenbeck oscillator is uni-

tary. This is not very surprising, nor very exciting since the two second order

degrees of freedom in this case are decoupled, and each one follows a Harmonic

oscillator evolution. In fact the system has two conserved quantum numbers - not

just the total energy, but also the energy of each individual oscillator is conserved.

For this reason the classical motion in the X, Y plane is bounded and the quantum

evolution is unitary.

A more interesting and general question is whether interacting systems with

ghosts can be unitary. The worry is clear. We have a Hamiltonian which is

unbounded neither from above nor from below, and once the two modes x and
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y are allowed to interact, there is a real and present danger that the system can

develop an instability, where both x and y run away to infinity even though the

total energy stays conserved.

In the quantum mechanical context one can pose the following question:

does a system of coupled “particle” and “ghost” degrees of freedom possess nor-

malizable eigenstates. If the answer is affirmative, such system enjoys unitary

quantum evolution, since the probability to find the system in finite volume does

not decrease with time 3. If this is not the case, such systems would not allow for

unitary quantum mechanical evolution and probability would leak out completely

through the boundaries in a finite amount of time.

The aim of this section is to present a simple example of a model, which

remains unitary even though it contains interacting particle and ghost degrees of

freedom 4. Let us add to our Hamiltonian a quartic interaction of the form

H =
1

2
π2
y +

1

2
ω2

1y
2 + λ1y

4 − 1

2
π2
x −

1

2
ω2

2x
2 − λ2x

4 + µx2y2 (3.77)

3 One should qualify this statement slightly. An initial state that has a finite but nonunit

projection onto a subspace spanned by normalizable eigenstates will leak probability initially.

This leakage will stop after a while and the rest of the evolution will be unitary, preserving

the part of the total probability associated with the normalizable subspace. Such behavior is

physically perfectly admissible and we will refer to it as unitary disregarding any initial transient

leakage of probability
4 We note that an example of a stable supersymmetric system with ghosts was discussed in

[51].
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For definiteness we choose µ > 0. At µ = 0 the theory is clearly unitary, as

the particle and ghost degrees of freedom are decoupled, and evolution of each

one separately is unitary in exactly the same sense as for the Pais - Uhlenbeck

oscillator.

The question about stability can be asked already on the classical level. It

was noted in [52] and also [47], that some systems of this kind allow for classically

stable solutions, namely oscillatory solutions for which the amplitude does not

grow without bound as a function of time. Specifically ref. [52] studied numerically

the evolution of eq.(3.77) for λ1,2 = 0 and found that the classical behavior of the

system is stable as long as the initial energy stored in the oscillators is not too

large. Denoting the initial displacement of the oscillators from the equilibrium

by M , ref. [52] found that for M2 < M2
c = 1

µ
ω2

2 the behavior is oscillatory,

while for M2 > M2
c the amplitude of oscillations grows without bound. The

addition of the quartic self interaction λ1,2 further stabilizes the system. We have

repeated the numerical exercise of [52] for the system eq.(3.77), and have found a

similar behavior in a wider range of parameters. In fact as long as the coupling µ

remains small µ� λ1,2 we did not see classical instability for any initial conditions

that we have tried. Examples of evolution for several initial conditions are given

in Fig.1. This suggests that when the interaction is weak enough, the classical

system is absolutely stable, although it is not possible to prove such a statement

by numerical methods.
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Reference [47] performed a similar classical study of a relative of the Hamil-

tonian (eq. 3.77) for which the interaction potential is antisymmetric under x→ y.

All classical trajectories explored in this paper also did not exhibit any instability.

Thus, at least classically, it is certainly possible to find systems with ghosts which

are stable.

(a) x0 = 21, y0 = 20, ẋ0 = 25, ẏ0 = 29 (b) x0 = 21, y0 = 20, ẋ0 = 25, ẏ0 = 29

(c) x0 = 1, y0 = 1, ẋ0 = 0, ẏ0 = 0 (d) x0 = 1, y0 = 1, ẋ0 = 0, ẏ0 = 0

Fig. 3.1: Typical time evolution of x (red) and y (blue) for different initial con-

ditions. The parameters are chosen as ω1 = 3, λ1 = 10, ω2 = 5, λ2 =

7, µ = 3. The evolution is plotted over two time intervals to show the

detailed structure of time dependence and to demonstrate the absense

of instability over very long times.
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Note, that in order for the quantum system to be unitary, its classical coun-

terpart has to have stable evolution for arbitrary initial conditions. Otherwise

quantum tunneling will connect stable and unstable regions of the phase space

and will inevitably lead to violation of unitarity. This is the situation, for exam-

ple in the upside down Mexican hat potential U(x) = −λ(x2 − x2
0)2. Classical

solutions with total energy −λx4
0 < E < 0 and initial displacement |x| < x0 are

regular. However quantum mechanically the system is non-unitary due to finite

probability of tunneling into the unbounded region |x| > x0.

In the present case, one can give an argument that the theory remains stable,

at least in a limited range of parameters. Let us consider the limit ω1 � ω2. In

this case one can use the classical Born-Oppenheimer approximation. Since y

oscillates much faster than x, one can consider the motion of y in the background

of fixed x. Thus for given x the dynamics of y is given simply by an anharmonic

oscillator with the frequency, which for large x behaves as ω2 = µx2. This is

clearly a well defined bounded motion. The dynamics of x is affected by the

average value of y2 for a given trajectory. Given the initial energy E stored in the

mode y, we have (for large x, which is the interesting and potentially dangerous

regime) ȳ2 ∝ E/µx2. The dynamics of x then is governed by the effective potential

1

2
ω2

2x
2 + λ2x

4 − µȳ2x2 =
1

2
ω2

2x
2 + λ2x

4 − E (3.78)

Thus the dynamics of x in this approximation is unaffected by y and is bounded

and stable. A similar argument can be given for the opposite case ω1 � ω2.



90

Thus at least when the two frequencies are very different there is no instability

for arbitrary initial conditions. In this case one expects that the quantum theory

is well defined and unitary in the sense explained above.

In the next subsection we present another line of reasoning supporting the

same conclusion for small µ.

Asymptotics of Eigenfunctions for Small µ

One way to establish that a quantum theory has normalizable eigenstate is to find

asymptotics of eigenfunctions for large values of coordinates x and y.

As usual, we introduce an eikonal S via

Ψ = Ne−S(x,y) (3.79)

If the eikonal is positive and divergent for large values of the coordinates, the wave

function is normalizable. For large values of S, |x| and |y| it satisfies the following

“semiclassical” equation:

−1

2

(
∂S

∂y

)2

+
1

2

(
∂S

∂x

)2

+ λ1y
4 − λ2x

4 + µx2y2 = 0 (3.80)

We will not attempt to solve this equation in full generality, but rather explore

the behavior of S for small values of µ. For µ = 0 the solution is simply a sum of

the solutions for two decoupled degrees of freedom:

S0(x, y) =

√
2λ1

3
|y|3 +

√
2λ2

3
|x|3 (3.81)
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The crucial point is that the structure of the potential is such that for µ� λi, the

perturbation is smaller than the leading order potential for generic large values of

x and y. This is of course very different from the standard perturbation theory

around a harmonic oscillator potential, where a perturbation is usually bigger

than the unperturbed potential for large values of the coordinate. Thus although

the standard perturbation theory around a Harmonic potential is asymptotic, we

expect the perturbation theory in µ to have a finite radius of convergence.

Let us therefore solve eq.(3.79) perturbatively. Let S = S0 + S1, where

S1 ∝ µ. We first solve the equation for x, y > 0. To first order in µ we have:

−
√

2λ1y
2∂S1

∂y
+
√

2λ2x
2∂S1

∂x
+ µx2y2 = 0 (3.82)

Changing variables x̄ = 1√
2λ2x

, ȳ = 1√
2λ1y

and defining x± = x̄ ± ȳ the

equations becomes simple

∂S1

∂x−
=

4µ

λ1λ2

1

(x+2 − x−2)2
(3.83)

A well behaved solution to this equation is:

S1(x+, x−) =
4µ

λ1λ2

1

2x+3

[
− x+x−

x−2 − x+2
+ arctanh

(
x−

x+

)]
(3.84)

In terms of the original variables, the solution can be written as:

S1(x > 0, y > 0) =
√

2µx2y2

√
λ1y −

√
λ2x

(
√
λ1y +

√
λ2x)2

+2
√

2µ
√
λ1λ2

x3y3

(
√
λ1y +

√
λ2x)3

log(

√
λ1

λ2

y

x
)

(3.85)
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Extending the solution to other regions of the plane we find

S1(x, y) =
√

2µx2y2

√
λ1|y| −

√
λ2|x|

(
√
λ1|y|+

√
λ2|x|)2

+2
√

2µ
√
λ1λ2

|x|3|y|3

(
√
λ1|y|+

√
λ2|x|)3

log(

√
λ1

λ2

|y|
|x|

)

(3.86)

As expected, the correction S1 is smaller than S0 at large values of the

arguments, and thus the asymptotics of the wave function is determined by S0.

Thus we find that for small µ our model quantum mechanically has normalizable

eigenstates, and therefore unitary evolution.

3.1.5 Discussion

Although Pais-Uhlenbeck quantum mechanics is just a toy model, the existence of

unitary ghost theories could potentially have very interesting implications, espe-

cially if the mechanism of stabilization by self-interaction can be extended to the

realm of field theory. In particular, one can ask whether the perturbative diver-

gence of the rate of decay discussed in [43] is always an indication of instability.

In principle it is possible that this perturbative result only means that the per-

turbative state gets modified at all momenta, including the ultraviolet; however,

modification does not necessarily mean instability. In the quantum-mechanical

example discussed in this section, perturbation theory would certainly give a fi-

nite decay rate of the “perturbative vacuum” (the Gaussian eigenstate of the

noninteracting system). However, since the theory is in fact stable, it still has

a normalizable eigenstate which evolves into the perturbative vacuum when all
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couplings vanish. It is conceivable that the fate of the vacuum in the model dis-

cussed in [42] [43] is similar; the perturbative vacuum is not unstable, but simply

evolves into another normalizable state. Since the theory has Lorentz invariance,

the new state presumably will also be Lorentz invariant, and will have a relativis-

tic excitation spectrum, which could be identified with physical particles. This

mechanism would require a strong enough self interaction of all the modes, includ-

ing the deep ultraviolet ones, and it may not be possible to achieve this with the

standard model interactions (in the particle and ghost sectors), or indeed in any

renormalizable matter theory. There is however an interesting possibility that, if

the gravitational sector is described by conformal gravity - which is much softer in

the ultraviolet than general relativity-the “decay rate” does not diverge and the

stability of the “vacuum” can be achieved with a renormalizable self-interaction.

Such a scenario would of course necessitate the stability of the conformal gravity

itself.

3.2 Conformal Gravity Redux: Ghost Turned Tachyon

As explicitly demonstrated in section 3.1, in simple quantum mechanical systems

presence of ghosts does not immediately signal instability even if the theory is

interacting. This is by no means an isolated example, other discussions of consis-

tent simple models with interacting ghost and normal modes can be found in [47]

[53]. But in a quantum field theory such stability must be much harder to achieve
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due to many excitation channels available [43]. Nevertheless it is an interesting

open question, whether the ghost modes in conformal gravity do indeed render the

full interacting theory unstable, or perhaps the theory is consistent “as is”5. In

fact it has been shown that the number of local conserved quantities in conformal

gravity is equal to the number of perturbative ghost modes [54]. This can give

hope that the dynamics is constrained enough and not ergodic to an extent that

instabilities do not appear even in the interacting theory.

Complete analysis of an interacting theory of gravity is a very complicated

proposition. Our aim in this section is much more modest. We ask if the theory has

instabilities when the number of degrees of freedom is restricted to translationally

invariant modes. The requirement of translational invariance is very severe and

reduces the field theory to a theory of a finite albeit relatively large number of

classical degrees of freedom. We derive the Hamiltonian for this system and study

classical behavior of its solutions. Our result is somewhat unexpected. We find

that the theory is unstable on the classical level. The instability is of a somewhat

different nature than what we may have expected from the previous argument.

It is not due to transfer of large amount of energy from ghost modes to normal

modes. Instead the nonlinearity of the interaction induces a potential for the

5 We note that it may be possible to make sense of conformal gravity even if ghosts do cause

instability by either restricting oneself to a subset of solutions [28], or invoking quantization with

nonstandard inner product [37]. However we are not aware at the moment of a fully consistent

way of implementing either of these suggestions in conformal gravity.
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ghost modes which is positive. Thus the ghost becomes also a tachyon - it’s

kinetic term is negative, while its potential is positive. Thus the ghost sector

becomes unstable by itself. We find simple classical solutions for which normal

modes are vanishing, and ghost modes diverge within a finite amount of time, set

by the initial conditions.

3.2.1 The Hamiltonian of the Reduced Theory

Conformal gravity is defined by the action

S = −
∫
d4x
√
−g(3RµνR

µν −R2) (3.87)

with the usual definitions of the Riemann and Ricci tensors Rρ
µσλ = −∂σΓρµλ+ ...

and Rµλ = Rσ
µσλ. We use the metric convention (+,−,−,−). Since our interest

is in the classical theory, we set the dimensionless coupling constant to unity, as

its value does not affect solutions of equation of motion.

We treat this Lagrangian as a Lagrangian of an ordinary field theory. We

will derive the Hamiltonian which generates classical time evolution by Legandre

transforming it rather than using the ADM procedure [55]. Since the Lagrangian

possesses gauge invariance, this is of course a constrained system, and constraints

have to be properly taken into account. The Lagrangian, as is well known is gauge

invariant under the general linear transformation

gρσ(x)→ g′ρσ(x′) = gµν(x)
∂xµ

∂xρ′
xν

∂xσ ′
(3.88)
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and, in addition the local conformal transformation:

gµν(x)→ g̃µν(x) = Ω2(x)gµν(x) (3.89)

We choose to impose a simple gauge fixing condition:

g00 = 1, gi0 = 0. (3.90)

This gauge condition does not fix one combination of conformal and general linear

transformations (see Appendix 5), and we will deal with this remaining gauge

symmetry later.

We truncate the theory by taking the metric to be space independent gµν =

gµν(t). The non vanishing components of the Christoffel symbol and Ricci tensor,

in the gauge eq.(3.90) for metric that does not depend on spatial coordinates, are:

Γ0
ij = −1

2
∂gij,Γ

i
0j =

1

2
gik∂gjk (3.91)

R00 = ∂Γi0i + Γij0Γj i0 =
1

2
∂(gij∂gij) +

1

4
gik∂gkjg

jm∂gmi =
1

2
∂α− 1

4
β (3.92)

Rij = −(∂Γ0
ij + Γkk0Γ0

ij) + (Γ0
kjΓ

k
0i + Γk0jΓ

0
ki) =

1

2
∂2gij +

1

4
α∂gij −

1

2
αkj∂gki

(3.93)

R =
1

4
∂α− 1

4
β +

1

4
α2 (3.94)

where, we have defined:

αij = gik∂gkj; α = αii (3.95)
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βij = ∂gik∂gkj; β = βii (3.96)

The action can be written as:

S = −
∫
dt
√
−g
[
3

(
(
1

2
∂α− 1

4
β)2 + (

1

2
∂αaj +

1

4
ααaj)(

1

2
∂αja +

1

4
ααja)

)
−

(
(
1

2
∂α− 1

4
β) + (

1

2
∂α +

1

4
α2)

)2
]

= −
∫
dt
√
−g
[
−1

2
(β + α2)(

1

2
∂α− 1

4
β) + 3(

1

4
∂α̃ab∂α̃

b
a +

1

4
αα̃ab∂α̃

b
a

+
1

16
α2α̃ab α̃

b
a)

]
(3.97)

Where, α̃ab is the traceless part of αab

α̃ab = αab +
1

3
αgab (3.98)

After some simple manipulations, involving integration by parts, this can

be written as

S = −
∫
dt
√
−g
[

3

4
∂α̃ab∂α̃

b
a −

1

8
∂αtr(α̃2)− 1

24
α2tr(α̃2) +

1

8

[
tr(α̃2)

]2]
(3.99)

Or using the identity

∂[
√
−g
[
tr(α̃2)

]
] =

1

2

√
−gα2

[
tr(α̃2)

]
+
√
−g∂αα̃ab∂α̃ba + 2

√
−gαα̃ab∂α̃ba (3.100)

and integrating by parts

S = −
∫
dt
√
−g
[
3∂α̃ab∂α̃

b
a + αα̃ab∂α̃

b
a +

1

2
tr(α̃2)

(
tr(α̃2) +

α2

6

)]
(3.101)

The latter form is more convenient for applications since it makes it obvious that

no time derivatives of α appear in the action.
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Since we imposed gauge conditions in the action, we must in principle sepa-

rately keep track of constraints that would be generated by variation of the action

with respect to g00 and gi0. However in our reduced theory this turns out not to be

necessary. The variation of the action with respect to gµ0 results in the equations

Bµ0 = 0 (3.102)

where Bµν is the so called Bach tensor:

Bµν ≡ ∇α∇βCµανβ −
1

2
RαβCµανβ = 0. (3.103)

Here Cµανβ is the conformal tensor - the traceless part of the Riemann tensor:

Cµναβ = Rµναβ − (gµ[αRβ]ν − gν[αRβ]µ) +
1

3
Rgµ[αgβ]ν . (3.104)

However, in the gauge gi0 in the reduced theory (no xi dependence) it is

obvious that Bi0 = 0 identically. The Bach tensor is by definition traceless, thus

identically

B00 = gijBij (3.105)

Therefore B00 vanishes automatically when the spatial components vanish. These

are required to vanish by equations of motion that follow from the action eq.(3.99).

Thus in the translationally invariant approximation, constraints eq.(3.102) do not

add any new information, and we can forget about their existence.
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The Hamiltonian

Our aim now is to derive the Hamiltonian for the system described by the action

eq.(3.99). Since the fields α are related to the time derivative of gij, we introduce

this relation into the action with the help of the Lagrange multiplier

S = −
∫
dt
√
−g
[
3∂α̃ab∂α̃

b
a + αα̃ab∂α̃

b
a +

1

2
tr(α̃2)

(
tr(α̃2) +

α2

6

)
− λab(αba − gbc∂gca)

] (3.106)

The conjugate momenta are:

pij =
∂L

∂(∂gij)
= −
√
−g
2

[λibg
jb + λjbg

ib] (3.107)

βij =
∂L

∂(∂α̃ji )
= −
√
−g(6∂α̃ij + αα̃ij) (3.108)

and

pα = pλ = 0 (3.109)

To find the Hamiltonian, we take the Legendre transform of the action

and use eq.(3.107) to express λab in terms of the momenta pij. The resulting

Hamiltonian is

H = pij∂gij − L = − 1√
−g

1

12
βijβ

j
i +

1

6
αα̃ijβ

j
i +

1

2

√
−g
[
tr(α̃2)

]2 − αbapangnb
(3.110)

The is complemented by a primary constraint

β = 0 (3.111)
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Commuting (calculating the Poisson brackets) the constraint with the Hamilto-

nian, we obtain the secondary constraint

{H, β} = C1 =
1

6
α̃ijβ

j
i −

1

3
pacgac = 0 (3.112)

In turn, commuting C1 with the Hamiltonian, we obtain another secondary con-

straint

{H,C1} =
1

12

βj iβ
i
j√

−g
− 1

2

√
−g
[
tr(α̃2)

]2
+ α̃ijp

jkgki = C2 (3.113)

Commuting this with the Hamiltonian no new constraints are generated.

Note that

H = −C2 + αC1 (3.114)

and thus the Hamiltonian vanishes on the constraint surface. This is natural in

a conformal theory. Classically however, it only means that we should consider

such solutions of equations of motion which have zero energy. The Hamiltonian is

still an important quantity, as it generates the equations of motion, even though

the energy vanishes on intersting classical trajectories.

Following the standard Dirac procedure, the first order constraint eq.(3.111)

can be supplemented by another condition which turns the constraints into second

order. A convenient choice is

α = 0 (3.115)

With this choice the Hamiltonian simplifies and we will adopt it in the following.
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General Linear Transformations

Before analyzing equations of motion and their solutions, we note that our model

has a large number of symmetries. We have already discussed gauge symmetry,

which was inherited from the complete theory where original gauge transforma-

tions were taken to be independent of spatial coordinates. However there is a

larger subgroup of the original space-time dependent gauge group, which pre-

serves the independence of the metric on xi. These transformations appear in the

reduced model not as gauge symmetries with associated constraints, but rather

as global symmetries. The reason there are no constraints associated with these

symmetries in the reduced model, is that they are automatically satisfied when

the fields are taken to be xi-independent.

Consider a general linear transformation that does not induce space depen-

dence in the metric, and preserves the gauge conditions eq.(3.90). It’s infinitesimal

form is:

x′α = (δαβ + ωαβ)xβ (3.116)

with ω0
0 = 0; ω0

k = 0

The transformation of the metric is:

gij → gij − gikωkj − gkjωki

gij → gij + gikωjk + gkjωik (3.117)
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For this to be a canonical transformation, the momenta have to transform as

δpij = ωibp
bj + ωjbp

ib (3.118)

The transformation of α and β can be found using the expression of α in terms

of time derivative of g, and again requiring that the transformation is canonical

αij → αij(1 +
1

3
ω)− ωkjαik + ωikα

k
j

βij → βij(1−
1

3
ω)− ωkjβik + ωikβ

k
j (3.119)

where, ω ≡ ωii.

It is indeed easy to check that this transformation leaves the Hamiltonian

invariant. One has

δH =
ω

3
H (3.120)

which vanishes on the constraint surface.

The matrix ωij is an arbitrary real matrix, thus providing us with 9 sym-

metries. One of them, corresponding to ωij ∝ δij however coincides with the

conformal transformation. We should therefore strictly speaking consider only

the traceless part ωij as generators of global symmetry transformations. The the-

ory thus has 8 symmetries. With such large number of conserved quantities, as

discussed in the introduction, one might hope that the dynamics of the model

is stable. We will see however, that this is not the case. Nevertheless this large

number of conserved quantity is handy to be able to find solutions of equations

of motion.
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3.2.2 Solving the equations of motion

Before directly tackling the solution of equations of motion it is useful to introduce

a different set of coordinates, which simplifies this problem somewhat. At the

moment our Hamiltonian is written in terms of basic variables gij and α̃ij. However

not all of them are independent. The metric gij is symmetric and contains 6

degrees of freedom, while α̃ij is not symmetric, but is nevertheless constrained

sine gijα̃
j
k is by definition a symmetric matrix. Additionally, we set α = 0. Also

the constraint eq.(3.112) can be used to eliminate one more degree of freedom.

We can use it for example to fix g = −1. Thus in total we have 10 degrees of

freedom. We will use the parametrization that makes these independent degrees

of freedom more accessible.

We introduce the general real matrix Λ by

gij = −
[
ΛΛT

]
ij

(3.121)

This relation defines Λ only up to a rotation, as Λ and ΛO give the same matrix

g. To define it completely we take

α̃ij =
[
ΛT−1

γΛT
]
ij

(3.122)

with γ - a diagonal traceless matrix

γ =

∣∣∣∣∣∣∣∣∣∣∣∣

γ1 0 0

0 γ2 0

0 0 −(γ1 + γ2)

∣∣∣∣∣∣∣∣∣∣∣∣
.
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With general γ eq.(3.122) is just a similarity transformation, but requiring γ to be

diagonal fixes the freedom in Λ left undetermined by eq.(3.121). Tracelessnes of γ

follows from the tracelessnes of α̃. The general matrix Λ has 9 degrees of freedom,

which we will reduce to 8 by requiring |Λ| = 1. Together with two components of

diagonal, traceless γ this constitutes the original 10 degrees of freedom present in

{g, α̃}.

In terms of the new variables we have

ġ = −(Λ̇ΛT + ΛΛ̇T ) (3.123)

α̇ = ΛT−1
(γ̇ + γΛ̇TΛT−1 − Λ̇TΛT−1

γ) = ΛT−1
(D0γ)ΛT

where

D0γ ≡ γ̇ + [γ,M ]; M ≡ Λ̇TΛT−1
(3.124)

The action eq.(3.99) can now be written as :

S = −|Λ|
∫
dt

{
3tr
(
γ̇2 + [γ,M ]2

)
+

1

2
[tr[γ2]]2 − tr µ̃

[
γ −

(
M +MT

)]
+αtr[γγ̇] +

1

3
µ[α− 2trM ] +

1

2
α2tr[γ2]

}
(3.125)

The Lagrange multiplier (symmetric) matrix µ̃ enforces the constraint relat-

ing α̃ to time derivative of g. Just like in the previous section, we can set α = 0,

since there is no time derivative of α in eq.(3.125). This can be done, but only

after requiring that the variation of S with respect to α vanishes. This variation
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leads to a constraint

∂S

∂α

∣∣∣
α=0

= |Λ|(trγγ̇ +
1

3
µ) = 0; (3.126)

This is the generator of the conformal gauge transformation expressed in the new

variables.

Calculating momenta conjugate to Λ, we find

pij =
∂L

∂Λ̇ij

= −|Λ|
[
ΛT−1

(
6[[γ,M ], γ] + 2(µ̃− 1

3
Iµ)

)]
ij

(3.127)

Note that on the constraint surface the symmetric part of matrix M is

proportional to γ. Thus only the antisymmetric part of M contributes to the

commutator in eqs.(3.125,3.127). Using this, we find

1

2
(ΛTp− pΛT ) = −6|Λ|[[γ, 1

2
(M −MT )], γ]

1

2
(ΛTp+ pΛT ) = −2|Λ|(µ̃− 1

3
Iµ) (3.128)

Conjugates to γ are found as

p1 =
∂L

∂γ̇1

= −6|Λ|(2γ̇1 + γ̇2), p2 =
∂L

∂γ̇2

= −6|Λ|(2γ̇2 + γ̇1) (3.129)

The Hamiltonian is:

H =
1

2
ΛTpγ−3|Λ|[γ, 1

2
(M−MT )]2 +

1

18|Λ|
(−p2

1−p2
2 +p1p2)+ |Λ|(γ2

1 +γ2
2 +γ1γ2)2

(3.130)

It is now possible to express the second term in terms of conjugate momenta using

eq.(3.128). It is most simply done by expanding both sides of eq.(3.128) in terms
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of the complete basis of 3 × 3 matrices. After some straightforward algebra, we

find:

[γ,
1

2
(M −MT ]2

=
1

18|Λ|2

[(
(ΛTp− pΛT )12

γ2 − γ1

)2

+

(
(ΛTp− pΛT )13

γ2 + 2γ1

)2

+

(
(ΛTp− pΛT )23

2γ2 + γ1

)2
]

(3.131)

Finally, diagonalizing the quadratic term in the Hamiltonian, we obtain:

H =− 1

18|Λ|
[p̃1

2 + p̃2
2] +

9

16
|Λ|[γ̃2

1 + γ̃2
2 ]2 +

1

2
tr
(
ΛTpγ

)
− 1

6|Λ|

[(
(ΛTp− pΛT )12

γ2 − γ1

)2

+

(
(ΛTp− pΛT )13

γ2 + 2γ1

)2

+

(
(ΛTp− pΛT )23

2γ2 + γ1

)2
]

(3.132)

Where,

p̃1 =
1

2
(p1 + p2), p̃2 =

√
3

2
(−p1 + p2) (3.133)

and

γ̃1 = (γ1 + γ2), γ̃2 =
1√
3

(−γ1 + γ2) (3.134)

The canonical form of the constraint eq.(3.126), which supplements this

Hamiltonian is:

1

3
(p1γ1 + p2γ2) + tr(ΛTp) = 0 (3.135)

As noted above, we fix the gauge freedom associated with this constraint by setting
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|Λ| = 16.

Our goal here is to see whether the Hamiltonian has unstable solutions.

We will not look for a general solution of equations of motion, but instead will

analyze a simple subset of those. The simplification is possible due to the following

observation. Let us define for convenience traceless matrices

τ1 = diag(1, 0,−1); τ2 = diag(0, 1,−1); σaij = εaij (3.136)

λ1 =

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0

0 0 1

0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣
; λ2 =

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 1

0 0 0

1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
; λ3 =

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0

1 0 0

0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
(3.137)

and associated generators of the general linear transformations

Gi = tr(ΛTpτ i); Ga
A = tr(ΛTpσa); Ga

S = tr(ΛTpλa) (3.138)

In terms of these, the Hamiltonian is written

H = − 1

18|Λ|
[p̃1

2 + p̃2
2] +

9

16
|Λ|[γ̃2

1 + γ̃2
2 ]2 +

1

2
Σi

(
Giγi

)
− 1

6|Λ|

[(
G3
A

γ2 − γ1

)2

+

(
G2
A

γ2 + 2γ1

)2

+

(
G1
A

2γ2 + γ1

)2
] (3.139)

Note that for all of these generators, we have [|Λ|, Gα] = 0. Consider a solution,

which at initial time has Gi = Ga
A = Ga

S = 0. Since commutator of any of the

generators Gα with the Hamiltonian eq.(3.139) is proportional to, at least the first

6 We do this only after deriving equations of motion to avoid the necessity to introduce Dirac

brackets.
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power of Gβ, this condition is preserved in time, and all the generators Gα vanish

at all times. We can think of this initial condition, as an initial condition imposed

on pij for arbitrary initial Λij. For this set of initial conditions, the equations of

motion therefore simplify considerably. The equation of motion for Λ becomes

Λ̇ij =
1

2
(γΛ)ij (3.140)

This determines Λ once the solution for γ is known as

Λ = A

(
exp

∫ t

0

γ

2
dt

)
(3.141)

where A is the initial condition.

The equations of motion for γ then are derived from he reduced Hamiltonian

H = − 1

18
[p̃1

2 + p̃2
2] +

9

16
[γ̃2

1 + γ̃2
2 ]2 (3.142)

where we have set |Λ| = 1 with accordance to previous discussion.

The reduced Hamiltonian is a simple upside-down unharmonic oscillator.

The kinetic term is negative, in accordance with the fact that γi appear as ghost

modes in the linearized theory, where the unharmonic potential is absent. In-

terestingly, the sign of the potential is positive, and therefore it is clear that the

dynamics of the reduced model is unstable. To see this explicitly, consider a simple

solution of equations of motion, corresponding to vanishing ”‘angular momentum”

in the γ̃1 − γ̃2 plane. We also have to impose the constraint of zero energy, which

is an easy task in the reduced model. Solutions under these conditions are very
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simple

γ̃1 = γr cos θ; γ̃2 = γr sin θ (3.143)

with

θ = const; γr =
γ0

1± γ0
23/2

t
(3.144)

The two solutions correspond to the sign of the initial radial velocity. For negative

initial velocity (sign + in eq.(3.144)), the “particle” initially moves towards the

origin. This is a stable solution, since at infinite time the particle simply climbs to

the top of the potential, and ends up there with zero velocity. For positive initial

relative velocity (sign − in eq.(3.144)) the particle moves away from the origin.

This solution is unstable. The instability is in fact much worse than would be for

an upside down harmonic oscillator. The particle reaches infinite distance within

a finite time tc = 23/2/γ0.

Transforming to the original variables we find

γ1,2 =
1

2
(cos θ ∓

√
3 sin θ)γr =

1

2
(cos θ ∓

√
3 sin θ)

γ0

1± γ0
23/2

t
(3.145)

The metric g is found to be

gij = −[AΓAT ]ij (3.146)

where Γ is the diagonal matrix with the following non-vanishing matrix elements

Γ11 =|1± γ0

23/2
t|23/2(cos θ−

√
3 sin θ);

Γ22 =|1± γ0

23/2
t|23/2(cos θ+

√
3 sin θ); Γ33 = [Γ11Γ22]−1

(3.147)



110

Either one or two eigenvalues of the metric g diverge at the terminal time tc, while

the rest of the eigenvalues (two or one) vanish.

3.2.3 Discussion

In this section we have considered conformal gravity in translationally invariant

approximation. Our main finding is that the nonlinear interactions lead to insta-

bility in the dynamics of zero momentum modes. Specifically we displayed a simple

solution of equations of motion which diverges within a finite time. The reason for

such a severe divergence is that the dynamical modes γ, which in the perturbative

regime have ghostlike kinetic term, acquire in addition a positive potential. Thus

this sector of the reduced theory is equivalent to two dimensional upside down

anharmonic oscillator. Close to the minimum of the potential γ behaves as a per-

tubative ghost with zero mass. However at any non-vanishing distance from the

minimum, the signs of kinetic and potential energies are opposite and γ behaves

as a tachyon.

Thus the perturbative ghost problem is not cured, but is rather exacerbated

by nonlinear gravitational interactions. Thinking about quantization, it is clear

that the theory does not allow sensible quantization via standard methods, i.e.

using standard Dirac norm. The possibility that the use of a nonstandard norm,

like in [37] could lead to a unitary theory may be worth exploring, although such

a procedure is rather non intuitive.
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Finally we note that another way to view the present calculation is as a

study of possible homogeneous cosmologies in conformal gravity. The universe

described by eqs.(3.146,3.147) is certainly very far from reality, since it is not

isotropic. In fact the only isotropic and homogeneous space allowed by conformal

gauge symmetry is Minkowski space, since any isotropic metric is conformally

equivalent to Minkowski one. Nevertheless, an interesting property of this metric,

is that it describes accelerated dynamics. As we indicated above, some dimensions

in this space undergo accelerated expansion, while others accelerated contraction.

Perhaps, when supplemented by conformal anomaly in the matter part [56], which

we have not considered here, it could acquire more realistic features while still

retaining the property of acceleration. This would be interesting to study.



Bibliography

[1] I. B. Ilhan, A. Kovner, Phys.Rev. D88 (2013) no.12, 125004

[2] I. B. Ilhan, A. Kovner, Phys.Rev. D93 (2016) no.2, 025015

[3] I. B. Ilhan, A. Kovner, Phys.Rev. D88 (2013) 044045

[4] I. B. Ilhan, A. Kovner,Phys.Rev. D89 (2014) no.10, 104015

[5] J. Greensite, Prog.Part.Nucl.Phys. 51, 1 (2003)

[6] C. Gattringer, C.Lang; Lect. Notes Phys., 788,1-211 (2010)

[7] L. Lyons, Phys. Rep. 129, 225 (1985)

[8] G. Bali, Phys.Rept. 343 (2001) 1-136

[9] G. ‘t Hooft, G, High energy physics. In: Zichichi A (ed.) EPS International
Conference, Palermo (1975)

[10] S. Mandelstam S, Phys. Reports 23C, 245-249 (1976)

[11] M. Shifman, Int.J.Mod.Phys. A25 (2010) 4015-4031

[12] H. Shiba, T.Suzuki; Phys.Lett. B333 (1994) 461-466

[13] Y. Chen, et al. Phys.Rev. D73 (2006) 014516

[14] for a different point of view: V. N. Gribov Eur.Phys.J. C10, 91-105 (1999)

[15] G. ’t Hooft, Nucl.Phys. B138 (1978) 1

[16] S. Samuel, Nucl. Phys. B 154, 62 (1979)

[17] A. Kovner; e-Print: hep-ph/0009138, published in In Shifman, M. (ed.): At
the frontier of particle physics, (World Scientific, Singapore, 2001) vol. 3,
1777-1825; I. I. Kogan and A. Kovner; e-Print: hep-th/0205026, published
in In Shifman, N. (ed.): At the frontier of particle physics, (World Scientific,
Singapore, 2002) Vol. 4, 2335-2407

112



113

[18] C. Korthals Altes and A. Kovner; Phys.Rev. D62 (2000) 096008; e-Print:
hep-ph/0004052;

[19] A. Kovner and B. Rosenstein; Phys.Rev. D49 (1994) 5571-5581; e-Print: hep-
th/9210154;

[20] L.D. Faddeev and A.J. Niemi, Nature 387, 58 (1997); e-Print: hep-
th/9610193; Phys. Rev. Lett. 82 (1999) 1624; Phys. Lett. B449 (1999) 214;
Phys. Lett. B464 (1999) 90; Nucl.Phys. B776 (2007) 38-65; e-Print: hep-
th/0608111

[21] Kanehisa Takasaki, e-Print: hep-th/9112041; published in In “Turku 1991,
Proceedings, Topological and geometrical methods in field theory” 383-397;
edited by Jouko Mickelsson and Osmo Pekonen; River Edge, N.J., World
Scientific, 1992

[22] A. Kovner and B. Rosenstein, JHEP 9809 (1998) 003; e-Print: hep-
th/9808031

[23] For simple discussion of string breaking see, for example, J. Greensite,
Lect.Notes Phys. 821 (2011) 1-211

[24] A. Gorsky, M. Shifman and A. Yung, e-Print: arXiv:1306.2364 [hep-th]

[25] E.I. Guendelman, E. Nissimov and S. Pacheva, Phys.Lett. B360 (1995) 57-64;
e-Print: hep-th/9505128

[26] F. Gliozzi Nucl. Phys. B141 (1978) 379.

[27] D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, JHEP 1502 (2015) 172;
e-Print: arXiv:1412.5148 [hep-th]

[28] See for example J. Maldacena, e-Print: arXiv:1105.5632 [hep-th]; R. Brustein
and A.J.M. Medved, Phys.Rev. D84 (2011) 126005, e-Print: arXiv:1108.5347
[hep-th]

[29] A. G. Riess et. al., Astronom. J. 116, 1009 (1998); S. Perlmutter et. al.,
Astrophys. J. 517, 565 (1999).

[30] P. D. Mannheim; Found.Phys. 42 (2012) 388; e-Print: arXiv:1101.2186 [hep-
th]

[31] P. Mannheim and J. G. O’Brien J.Phys.Conf.Ser. 437 (2013) 012002, e-Print:
arXiv:1211.0188;

[32] P. D. Mannheim, Gen.Rel.Grav. 22 (1990) 289-298; Prog.Part.Nucl.Phys. 56
(2006) 340-445; e-Print: astro-ph/0505266



114

[33] P. Mannheim and J. G. O’Brien e-Print: arXiv:1211.0188; Phys.Rev. D85
(2012) 124020, e-Print: arXiv:1011.3495; Phys.Rev.Lett. 106 (2011) 121101,
e-Print: arXiv:1007.0970

[34] K.S. Stelle, Phys.Rev. D16 (1977) 953-969;

[35] T. Chen, M. Fasiello, E. A. Lim, A. J. Tolley, JCAP 1302 (2013) 042

[36] E.S. Fradkin and A.A. Tseytlin, Phys. Rept. 119 (45): 233362

[37] C. M. Bender and P. D. Mannheim; Phys.Rev.Lett. 100 (2008) 110402; e-
Print: arXiv:0706.0207 [hep-th]

[38] C. Bender and P. Mannheim, Phys. Rev. D 78 (2008), 025022, 20 pages,
arXiv:0804.4190.

[39] C. M. Bender and P. D. Mannheim; Phys.Lett. A374 (2010) 1616; e-Print:
arXiv:0902.1365 [hep-th]

[40] See for example C. de Rham, G. Gabadadze and A. J. Tolley, JHEP 1111
(2011) 093; e-Print: arXiv:1108.4521 [hep-th]

[41] A. Iglesias, Z. Kakushadze, Phys.Rev. D84 (2011) 084005

[42] D. Kaplan and R. Sundrum, JHEP 0607 (2006) 042; e-Print: hep-th/0505265

[43] J. M. Cline, S. Jeon and G. Moore; Phys.Rev. D70 (2004) 043543; e-Print:
hep-ph/0311312

[44] J. Garriga and A. Vilenkin; e-Print: arXiv:1202.1239 [hep-th]

[45] A. Pais and G.E. Uhlenbeck, Phys. Rev. 79, 145165 (1950)

[46] P. D. Mannheim and A. Davidson, Phys.Rev. A71 (2005) 042110; e-Print:
hep-th/0408104

[47] A. Smilga, SIGMA 5 (2009) 017; e-Print: arXiv:0808.0139 [quant-ph]

[48] M. Ostrogradsky, Memoires sur les equations differentielles relatives au
probl‘eme des isoperim‘etres, Mem. Acad. St. Petersbourg, VI 4 (1850),
385517.

[49] A. Mostafazadeh, Phys. Lett. A 375, 93 (2010); Phys.

[50] K. Bolonek and P. Kosinsky, arXiv:quant-ph/0612009

[51] D. Robert and A. Smilga J. Math. Phys. 49 (2008), 042104, math-ph/0611023



115

[52] S. M. Carroll, M. Hoffman and M. Trodden Phys.Rev. D68 (2003) 023509;
e-Print: astro-ph/0301273

[53] M. Pavic; e-Print: arXiv:1302.5257 [gr-qc]; Physical Review D 87, 107502
(2013); e-Print: arXiv:1304.1325 [gr-qc].

[54] J. Kluson, M. Oksanen, A. Tureanu; e-Print: arXiv:1311.4141

[55] R. Arnowitt, S. Deser, C. W. Misner, “Gravitation: an introduction to cur-
rent research”, Louis Witten ed. (Wiley 1962), arXiv:gr-qc/0405109

[56] G.’t Hooft; e-Print: Phys. Rev. D 84, 105018 (2011) arXiv:1009.0669 [gr-qc]

Appendices



Chapter 4

Appendix A

In this appendix we show that the model considered in this section 2.2 does not

admit two photon solutions with arbitrary polarizations. We are looking for two

photon solutions for which the electromagnetic tensor is of the form:

F̃µν = ∂[µz∂ν]χ = A(kµε
1
ν − kνε1µ) cos kx+B(pµε

2
ν − pνε2µ) cos px (4.1)

Foer simplicity we choose the case when the first photon has momentum k in

x-direction and polarization a in y-direction, while the second photon has mo-

mentum p in y-direction and polarization b in z direction. Note that this case is

not covered by our construction of two photon states in the body of the paper.

Now, for components of F̃µν , we have:

∂[0z∂1]χ = 0 = ∂[1z∂3]χ = 0 (4.2)

∂[0z∂2]χ = ka cos kx = −∂[1z∂2]χ (4.3)

∂[0z∂3]χ = pb cos px = −∂[2z∂3]χ (4.4)
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Introducing new coordinates (x, y, z, t)→ (x̄ = t−x, ȳ = t−y, t̄ = t, z̄ = z),

and using unbarred symbols for notational simplicity, we have:

∂[tz∂y]χ = ∂[tz∂z]χ = ∂[xz∂z]χ = 0 (4.5)

∂[tz∂x]χ = ∂[xz∂y]χ = −ka cos kx (4.6)

∂[yz∂z]χ = pb cos py (4.7)

These equations have no solutions. Assuming ∂tz 6= 0, the first two equa-

tions in eq.(4.5) imply ∂yz∂zχ − ∂zz∂yχ = 0, which contradicts eq.(4.7)the last

equation. Alternatively, assuming ∂tz = 0, implies vanishing of either ∂tχ, or two

other partial derivatives of z . It is then easy to see that both these options are

in conflict with the rest of the equations. The result is that a two photon state

with this polarization pattern cannot be constructed in this model.

The model also contains solutions which do not satisfy the homogeneous

Maxwell equation. As an example of such a solution consider the configuration

χ = sin p · x; z = sin k · x (4.8)

It is easy to see that this configuration satisfies equations of motion, provided

(p · k)2 − p2k2 = 0 (4.9)

A simple example is a lightlike momentum kµ and a spacelike momentum pµ
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satisfying p · k = 0. This yields the dual field strength

F̃µν ∝ (kµpν − kνpµ)[cos(p+ k) · x+ cos(p− k) · x] (4.10)

which is not conserved

∂µF̃µν ∝ p2kν [sin(p+ k) · x+ sin(p− k) · x] (4.11)

In fact, both momenta k+p and k−p are spacelike, and thus F̃µν looks tachyonic.

However, as mentioned in the Discussion, since the model classically has many

degenerate vacua with broken translational invariance, interpretaton of classical

solutions as excitations is not so clear.



Chapter 5

Appendix B

Residual gauge symmetry of the action

In this appendix we show that the action eq.(3.99) of section 4 after gauge

fixing is still invariant under a combination of a general linear and conformal

transformation which has not been gauge fixed by eq.(3.90).

Under a combined transformation the metric transforms as

gρσ(x)→ g′ρσ(x′) = Ω2(x)gµν(x)
∂xµ

∂xρ′
∂xν

∂xσ ′
(5.1)

In order for the metric to remain a function of time only, we must only consider

the transformation of the type

xi = xi
′
, x0 = f(x0′), Ω = Ω(t) (5.2)

With this restriction we get g′i0(x′) = 0 if gi0(x) = 0, thus this gauge fixing

condition is preserved. In order to maintain the condition g00(x′) = 1, we need

to take Ω2(t) = 1
f ′2

. The spatial components of the metric transform under this

transformation as

gij(t)→ g′ij(t
′) =

1

f ′2
gij(t(t

′)) (5.3)
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. Denoting 1
f ′

= F , we can write

g′ij(t) = F 2gij(f(t)), g′ij(t) =
1

F 2
gij(f(t)) (5.4)

Then, using

∂

∂t
=

1

F

∂

∂f
(5.5)

we obtain

∂tgij(t)→ ∂tg
′
ij(t) = ∂tF

2gij(f) + F 2∂tgij(f) = ∂t(F
2)gij + F∂fgij (5.6)

and

αki(t)→ α′ki(t) = g′kj∂tg
′ij =

1

F 2
gkj[∂tF

2gij + F∂fgij] =
∂tF

2

F 2
δki +

1

F
αki(f)

(5.7)

, Or

α̃kj (t)→
1

F
α̃kj (f); α(t)→ 3

∂t(F
2)

F 2
+

1

F
α(f) (5.8)

Similarly, it follows that:

∂tα
k
j(t)→ ∂tα

′k
j(t) = ∂t(

∂t(F
2)

F 2
)δkj + ∂t(

1

F
)αkj(f) +

1

F 2
∂fα

k
j(f) (5.9)

Or

∂α̃kj (t)→∂t(
1

F
)α̃kj (f) +

1

F 2
∂f α̃

k
j (f);

∂tα(t)→3∂t(
∂t(F

2)

F 2
) + ∂t(

1

F
)α(f) +

1

F 2
∂fα(f)

(5.10)

It is now straightforward to substitute these transformed fields in the expression

for the action eq.(3.99). Upon discarding total derivative terms and changing
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the integration variables t → f it is then easy to see that the action is indeed

invariant.
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