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ABSTRACT

Inferences on ability in item response theory (IRT) have been mainly based on item re-

sponses while response time is often ignored. This is a loss of information especially with

the advent of computerized tests. Most of the IRT models may not apply to these mod-

ern computerized tests as they still suffer from at least one of the three problems, local

independence, randomized item and individually varying test dates, due to the flexibility

and complex designs of computerized (adaptive) tests. In Chapter 2, we propose a new

class of state space models, namely dynamic item responses and response times models

(DIR-RT models), which conjointly model response time with time series of dichotomous

responses. It aims to improve the accuracy of ability estimation via auxilary information

from response time. A simulation study is conducted to ensure correctness of proposed

sampling schemes to estimate parameters, whereas an empirical study is conducted using

MetaMetrics datasets to demonstrate its implications in practice. In Chapter 3, we have

investigated the difficulty in implementing the standard model diagnostic methods while
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comparing two popular response time models (i.e., monotone and inverted U-shape). A

new variant of conditional deviance information criterion (DIC) is proposed and some

simulation studies are conducted to check its performance. The results of model compar-

ison support the inverted U shaped model, as discussed in Chapter 1, which can better

capture examinees’ behaviors and psychology in exams. The estimates of ability via

Dynamic Item Response models (DIR) or DIR-RT model often are non-monotonic and

zig-zagged because of irregularly spaced time-points though the inherent mean ability

growth process is monotonic and smooth. Also the parametric assumption of ability

process may not be always exact. To have more flexible yet smooth and monotonic

estimates of ability we propose a semi-parametric dynamic item response model and

study the robustness of the proposed model. Finally, as every student’s growth is dif-

ferent from others, it may be of importance to identify groups of fast learners from slow

learners. The growth curves are clustered into distinct groups based on learning rates.

A spline derivative based clustering method is suggested in light of its efficacy on some

simulated data in Chapter 5 as part of future works.
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Chapter 1

Introduction

1.1 Item Response Theory

In psychometrics, Item Response Theory (IRT) is a very popular paradigm that deals

with designing, analyzing, and scoring of tests, questionnaires etc that measure abilities,

attitudes, or other latent traits. This is the reason why it has another name, latent trait

analysis. To understand the estimation process better we consider the analysis of test

data consisting of a number of multiple choice type questions. In this test we assume

that 100 students are given a mathematical placement test and each test contains 20

multiple choice type questions on topics in college algebra. The intended test in this

case is supposed to assess the students mathematical ability and accordingly should help

decide which mathematics course would be ideal for him/her.

In designing such a test there are some immediate concerns. The test designer intends

to put items in different levels of difficulty. If all items are very easy in relative to general

levels of abilities then all students will get them right and the results may not be helpful

in accurately assessing their math proficiency. Similar situation is anticipated if the

items are too difficult. So generally it is desirable to have broad range of performances
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on the exam. This wide difference in performance will help assessing the ability in a

better way. This aspect is usually addressed through difficulty parameter which will be

elaborated later in equation 1.1.

If the difficulty is properly addressed, there could be another concern. The concern

is if the items can discriminate between students. For example, if an item is incorrectly

answered by all of the people then it is useless for the estimation. Hence nothing would

be lost if it is removed. So an “ideal” item is the one that students having ability

below its difficulty level get it incorrect whereas students having ability larger than its

difficulty get it correct. Probably such item does not exist in reality but most valuable

items are those that exhibit strong positive correlation with math proficiency.This aspect

is addressed through discriminatory parameter as will be elaborate in equation 1.1.

To put things in perspective, these test characteristics and abilities can be learned

through what is known as item response models. The model represents the probability

that a student answers an item accurately. Usually the probability is a function of

students ability and other two parameters are item difficulty. This latent score is better

than a test score for assessing ability because they let compare scores across many tests

with similar purposes. Tests with similar purposes can be very different in terms of

design. So test scores may not be comparable. In the next section we discuss some

popular IRT models and discuss their properties along with their limitations.
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1.2 Rasch Model and its Variants

1.2.1 Rasch Models and its 2 Parameter, 3 Parameter Versions

Suppose θi denotes i-th person’s ability and Xi,l is his/her binary response to the item

l (1 if accurate else 0). One of the popular probability models can be given by what is

known as 2 parameter IRT models.

Pr(Xi,l = 1 | θi, dl, al) = F(dl(θi − al)), (1.1)

dl : discriminatory parameter; al : difficulty parameter,

Here F (x) can be any distribution function. But the most popular choices in the

literature are logistic distribution (F (x) : [1 + e−x]−1) and normal ogive distribution

(F (x) : Φ(x)). Both are quite popular for their own attractive properties. Logit link

can be expressed as a log odds ratio while normal ogive may be easier to work with in

Bayesian computations. One can note that if items of large al values are chosen proba-

bility of correct response is going to be very low for all students. This is the difficulty

aspect mentioned in earlier section. Here we also note that if al and θ are treated fixed

probability of correct response will go up if θ is larger than al, otherwise it will decline.

This is the discriminatory aspect stressed in the last section. When all the items are

assumed to have same discriminatory power dl becomes 1 and this is what Rasch (1961)
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proposed along with the choice of F (x) to be logistic distribution.(also called 1 param-

eter logistic (1-PL)). If F (x) is logistic 1.1 is called 2 parameter logistic model (2-PL).

It was then extended to 3 parameter logistic model (3-PL) by incorporating a guessing

parameter, that indicates prior knowledge that the item carries about the answer.

Pr(Xi,l = 1 | θi, dl, c∗l , al) = c∗l + (1− c∗l )F(dl(θi − al)) (1.2)

c∗l = guessing parameter.

1.2.2 Implicit Assumptions in Rasch type Models

Traditionally, almost all variants of Rasch models assume local independence in IRT,

which means, conditionally on θi, dl, al as in (1.1) the responses are independent. How-

ever, let us consider answering a few multiple choice type questions based on a passage

where one usually answers a question once he/she has an overall comprehension of the

passage. Clearly here, the local independence assumption falls apart. Such questions

are more common in today’s tests.

With the advent of computerized tests, the modern test formats have gone through

significant changes. Modern test formats differ from the classical ones on the following

aspects: (a) while classical test data used to be collected at a single point of time, the new

computer based tests allow students to take tests over different times. Note that in classic

Rasch model ability is not treated dynamic. In addition, new computerized tests can
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be taken at individually varying time intervals, which can only add to the complexity.

(b) With the advent of computerized tests, the new information about the test-taker

background along with response time taken now can be recorded. Rasch model did not

allow co-lateral or co-variate information. (c) Classical test formats used to present each

test taker with the same set of questions (items), thus item-wise calibration was possible

based on many samples, while on the other hand computerized tests do not allow for

calibration since (i) the tests let students choose passage from a pool of articles, often

based on some estimate of his/her current ability. As a result, two students usually do

not pick the same passage; (ii) even in case two people choose the same passage they

are usually asked randomly selected different subsets of questions from the set of all

questions that can be asked from the passage. This phenomenon is often referred to as

randomized item.

These changes necessitate revising the classical models and adapting them to a set

of new assumptions or introducing new set of models to address them entirely. Next we

elaborate on these changes and discuss recent developments addressing them.

1.3 Recent Developments in Response Models

1.3.1 Local Dependence and Randomized Item

For local dependence issues, there have been parallel developments in recent years. These

works can either be of two types: (1) detecting local dependence through formulating
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tests. For example, Chen and Thissen (1997), Glas and Falcón (2003) built χ2 based

test and score tests respectively, whereas Liu and Maydeu-Olivares (2013) worked with

a general purpose statistic (called R2 which is asymptotically equivalent to a χ2) to

determine local dependence. However, some of these tests may be defined on minimal

assumptions on information matrix approximation but may compromise on power. (2)

Others worked towards modeling these dependencies (Jannarone (1986), Andrich and

Kreiner (2010) and Wang, Berger, and Burdick (2013)). For example, Andrich and

Kreiner (2010) tried modeling conditionals of consecutive item selection, while Wang

et al. (2013) brought in the idea of random test effects and daily effects.

To allow for randomized items (as discussed in subsection 1.2.2), recent works usually

bring random effects to model it in IRT. Sinharay, Johnson, and Williamson (2003),

De Boeck (2008), Wang et al. (2013) took care of it by adopting this approach.

1.3.2 Longitudinal IRT

In this thesis we have worked with longitudinal data, in which a person can sit for

multiple tests at different dates. We are interested to study the growth of the latent

trait (ability in our case). So individual’s ability is not constant over time. This idea

necessitates a growth process of ability over time, which can not be accommodated by

traditional models. The recent works seem to approach these issues in one of 3 ways: (a)

by parametric function of time, for example, Johnson and Raudenbush (2006) modeled

ability by linear or polynomial function of time, where these time points are equispaced
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and fixed for all test-takers whereas Hsieh, von Eye, Maier, Hsieh, and Chen (2013) came

up with couple of inter-dependent structural equations involving time. Verhagen and

Fox (2012) considered linear and quadratic functions of time with random coefficients.

(b) by Markov Chain, for instance, Park (2011) assumed changes in voting preferences

are due to age-specific regime changes and modeled it by a Markov process, whereas

Bartolucci, Pennoni, and Vittadini (2011) analyzed tests scores by modeling transition

probabilities with covariates; (c) by a combinations of them, Bollen and Curran (2004)

made a comparative study and showed neither of them could be enough to address latent

trajectory models, Wang et al. (2013) combined the two ideas.

1.4 Response Time Models

The relation between response and response time has been debated for years. Roskam

(1997), Wang and Hanson (2005) suggested models where they considered response as a

causal factor in determining accuracy. As for instance one can observe in the following

example of Roskam (1997),

Pr(Xi,l = 1 | θi, al) = F(θi + logRi,l − al), θi = “mental speed”. (1.3)

Here interpretation of θi is slightly different. With exp(θi + logRi,l) or exp(θi)Ri,l, the

product represents the total faculty and it is interpreted as product of “mental speed”

(θ in exponential scale) and “time” (R). Yet equation 1.3 becomes a variation of Rasch
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model. The model received criticism for treating response time known beforehand.

Gaviria (2005) proposed to model log-response time given accurate answer and left it

unspecified when inaccurate. Thissen (1983) suggested to model the underlying param-

eter responsible for accuracy. Thissen (1983) model can be given as follows

logRi,l = µ+ νi + τl + βL(θi − al) + ζi,l. (1.4)

Here L(x) denotes a linear function, usually with discrimination factor as introduced

in 2-PL models. νi and τl denote what are called “slowness” parameters. It assumes

that response time depends on two quantities, one is speed of the test-taker, which is

the amount of time that person takes for infinitely easy set of problems and slowness

intensity of the question, which dictates the time taken due to the nature of the problem.

In recent years joint hierarchical models were introduced to incorporate both accuracy

models along with Thissen (1983)’s type of response time models (RTM), based on the

idea that response time should be treated as random variable jointly with accuracy. For

instance, Ferrando and Lorenzo-Seva (2007) proposed the joint models conditionally on

θ and other factors in which they took an RTM as in (1.4) with L(x) as
√
Linear(x)2

and 2-PL IRT model. On the other hand, Van der Linden, Klein Entink, and Fox (2010)

proposed an RTM as in (1.4) with L(x) as Linear(x) conditionally on a person specific

latent parameter (τ) and other item specific parameters along with a 3 parameter normal

ogive (3-PNO) for IRT model (similar to 3-PL but F (x) is chosen to be probit instead)
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conditionally on latent ability (θ), which were called lower level models. At the higher

level, they specified the joint distributions of θ and τ , thereby allowing the information

to be borrowed.

1.5 Bayesian Estimation of IRT and its Advantages

In modern tests, inference is drawn in presence of quite complex dependency structures

and many sources of uncertainty. Traditional frequentists’ methodology has approached

the problem through various iterative schemes (such as Expectation Maximization al-

gorithm (EM)) in which each iteration step tries to solve less complex sub-problem and

eventually combine the results. For example, in standard marginal maximum likeli-

hood (MML) practice, one estimates items ( called item calibration), that is, items are

estimated assuming ability is missing (Bock and Aitkin (1981)) and then the item pa-

rameters are treated known and fixed at their calibrated values when proceeding with

inference regarding examinees and sub-populations. This methodology has been the key

to successful implementation of IRT methods. However, as complexity of the model

increases, application of EM type algorithm becomes less straightforward. Moreover, as

mentioned by Robert K. Tsutakawa (1988), it is hard to incorporate uncertainty into

the item parameter estimates for calculations of standard errors about ability estimates.

In contrast, in Bayesian methods, while computing maximum a posteriori (MAP) or
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expected a posteriori (EAP) estimates of ability in a fully Bayesian framework, estima-

tion uncertainty is automatically incorporated into the standard errors of MAP or EAP

estimates. As far as computation is considered, implementing MCMC steps (Gelman,

Carlin, Stern, Dunson, Vehtari, and Rubin (2013), Gelfand and Smith (1990), Chib and

Greenberg (1995)) is usually simpler than computing quadratures (E-step of EM) or

derivatives ( M-step of EM). The cost of this flexible implementation is usually slower

convergence of estimation algorithms. Albert (1992) first popularized the Bayesian appli-

cation in a data augmentation version(Tanner and Wong (1987)) of 2 parameter normal

ogive (2-PNO) models using Gibbs sampling (Gelfand and Smith (1990)), a very popular

MCMC techniques while Patz and Junker (1999) extended the work of Albert (1992) to

general problems with methods based on Metropolis Hastings within Gibbs (Chib and

Greenberg (1995)). Since then these implementations have been adopted extensively in

many Bayesian applications of IRT (Verhagen and Fox (2012), Fox and Glas (2001), etc).

In this thesis we have used the data augmentation method in a 1-PL model following

the work of Wang et al. (2013).

1.6 Motivation

Although there is a huge literature in IRT models, there have not been much work in

the paradigm of longitudinal IRT. This is because of advancement in technology and

computerization of tests for which it became possible in recent years to track one’s
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history with same types of tests. We have discussed some interesting deficiencies of

current methodologies throughout previous subsections. These serve as motivations for

the development new methodologies in this field. Though DIR ( Cf. Wang et al. (2013)

) models serve as a unified framework that are flexible to address general longitudinal

testing framework, they do not incorporate response time. So DIR models do not give

any idea about how speed plays a role in determining response. In addition, most

IRT models are too simple to be extended to complex scenarios like test takers coming

back and sitting for more than one exam on the same day, at irregularly spaced time

points. Joint hierarchical response time models do not assume explicit relationships

at higher levels. To improve the precision of estimates by incorporating response time

via joint modeling of response time and response, that, in addition, establishes speed-

accuracy relation in response time model with the an interpretable linkage, works as a

motivation for developing dynamic item responses and response times (DIR-RT) models

in Chapter 2. Because of complexity of DIR-RT models, it becomes harder to compare

different response time models with DIR-RT modeling framework. This necessitates

development of model diagnostic measure that can address this gap satisfactory. As a

result, new measures are developed for this purpose in Chapter 3. Next we focused on

growth models of ability and we observe that certain aspects of growth trajectories, like

smoothness, monotonicity were never addressed directly in the modeling framework. In

addition, all these growth models of ability are based on some parametric assumptions.

The goal to model ability trajectory with minimal assumptions on growth except for
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curvature properties like smoothness or monotonicity ( which are usually ignored during

IRT modeling) has led us to develop semi-parametric dynamic item response model

with monotonic and smooth growth curve in Chapter 4. Finally we have addressed

partially relatively less-explored and less-stressed aspect of IRT modeling, clustering

ability curves. To the best our of knowledge, clustering ability curves were never explored

with an objective to identify different groups of students with significantly different

learning rates from one another. This has motivated us, to build a distance-based

clustering method to cluster students based on differences in learning patterns and,

eventually to propose also a model-based alternative as part of future work in Chapter

5.

1.7 Thesis Outline

In Chapter 2 we introduce DIR-RT models and describe its properties. Later we im-

plement and verify efficient parameters recovery through simulation study. Efficacy and

usefulness of DIR-RT models compared to DIR models ( Wang et al. (2013) ) are es-

tablished through the same simulation study. Eventually we apply the methodology to

MetaMetrics’s EdSphere data and response time model with I-U shaped linkage is jus-

tified based on empirical evidences. Later in that Chapter, implications of the posterior

estimates are discussed. In Chapter 3, we propose to compare between two popular

response time (RT) models. We next discuss the difficulty in applying the traditional



13

measures for model selection and a new model diagnostic criterion is presented, that can

be used for model selection. We study the goodness of the criterion through simulation

study. In Chapter 4, we propose an alternative ability growth process, a smooth and

monotonic semi-parametric growth model. We then discuss the impact of regularization

to ensure smoothness. Posterior computation is executed based on simulated examples

to ensure efficient parameters estimation. Eventually we study the robustness of semi-

parametric model in the context of curve fitting for simulated data from DIR models. In

Chapter 5 we summarize the findings from all three Chapters and then suggest a spline

derivative based clustering technique as well as a model-based alternative to cluster the

ability growth curves based on their shapes. This analysis can be useful in practice to

help achieve goals of personalized education.
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Chapter 2

Bayesian Joint Modeling of

Response Times with Dynamic

Latent Ability

2.1 Introduction

Item Response Theory (IRT) models, also known as latent trait (analysis) models have

been widely used in testing for several decades. They originated from analyzing di-

chotomous items (Lord (1953) and Rasch (1961)), soon extended to modeling polyto-

mous items (Samejima (1969) and Darrell Bock (1972))). Their applications became

diverse from education and psychology to political science, clinical and health studies,

marketing and so on. The popularity of IRT models is because of their separability of

assessment of the latent traits of examinees (e.g., attitude, proficiency, preferences and

other mental/behavior properties) from effectiveness of the test items. One of the most

famous IRT models is Rasch model (Rasch (1961)), belonging to one-parameter IRT
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models, which is typically specified as

Pr(Xi,l = 1 | θi, dl) = F(θi − dl), (2.1)

where the subscript (i, l) is used to index i-th person and l-th item (or question), Xi,l

then represents the correctness (1 if correct otherwise 0) of the answer, dl denotes the

level of item difficulty, and F (x) is the link function. For the Rasch model, the link

function is chosen to be logistic.

Traditionally, Rasch models and all variants of them, such as two-parameter or three-

parameter IRT models, are based on the local independence assumption, which means,

conditionally on θi, dl, (as in (2.1)), the item responses Xi,l’s are statistically inde-

pendent. Classical IRT models are usually applied to data collected for exams in a

paper-and-pencil form, where different examinees take the same test at the same time.

However, with the advent of computer-based (adaptive) testing, examinees can take se-

ries of tests online or in the classroom at anytime as they wish and items are instead

randomly drawn from a bank of items. Then, the changes of test formats necessitate

revising assumptions of the classic IRT models and introducing new set of models to

accommodate changes.
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2.1.1 MetaMetrics Testbed and Recent Developments of IRT

Models

Our study is motivated from EdSphere dataset provided by MetaMetrics Inc. EdSphere

is a personalized literacy learning platform that continuously collects data about student

performance and strategic behaviors each time when he/she reads an article. The data

was generated during sessions in which a student read an article selected from a large

bank of available articles. A session begins like this: a student selects from a generated

list of articles having text complexities (measured in other platform of MetaMetrics

test design) in a range targeted to his/her current ability estimate. Once the article is

chosen, the computer, following a prescribed protocol, randomly selects a sample of the

eligible words to be “clozed”, that is to be removed and replaced by blanks and presents

the article to the student with these words clozed. When a blank is encountered while

reading the article, the student clicks it and then the true removed word along with three

incorrect options called foils are presented. As with the target word, the foils are selected

randomly according to a prescribed protocol. The student selects a word to fill in the

blank from the four choices and an immediate feedback is provided in the form of the

correct answer. The dichotomous items produced by this procedure are called “Auto-

Generated-Cloze” items and are randomized items. The key feature of these items is

their single usage, which implies even if two students select that same article to read,

the sets of target words and foils will be totally different. As a consequence, it is not
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feasible to obtain data-based estimates of item parameters (calibration).

The EdSphere dataset consists of 16,949 students who registered over 5 years in

EdSphere learning platform testing from a school district in Mississippi. The students

were in different grades and entered and left the program at different times between

2007 and 2011. They can take tests on different days and have different time lapses

between tests, which means the observations collected are longitudinal at individually-

varying and irregularly-spaced time points. Of course, a dynamic structure to modeling

changes of latent traits is needed. In addition, as mentioned in Wang et al. (2013), in

the environment of EdSphere, the factors such as an overall comprehension of the article

(an example of test random effects), the person’s emotional status (an instance of daily

random effects) and others, might undermine the local independence assumption of IRT

models.

To summarize, the distinctive features, i.e., randomized items, longitudinal observa-

tions, and local dependence often appear in the modern computerized (adaptive) testing

(not merely MetaMetrics datasets), making the classic IRT models face great challenges.

To address these, there have been many developments. To generalize IRT models for

longitudinal data, some researchers (e.g, Albers, Does, Imbos, and Janssen (1989), John-

son and Raudenbush (2006), and Verhagen and Fox (2012)) used parametric function

of time to model changes of latent traits; while others (Martin and Quinn (2002), Park

(2011) and etc.) applied a Markov chain model to describe the time-dependence of latent

traits. Yet neither of the two ideas would be enough to describe the changes (Bollen
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and Curran (2004)). Instead, Wang et al. (2013) modeled the growth of latent traits by

combining the two ideas. For local dependence, there have been parallel developments for

the procedures of detecting it (e.g., Yen (1984), Chen and Thissen (1997) and Liu and

Maydeu-Olivares (2013)) and the ways of modeling it (e.g., Jannarone (1986), Bradlow,

Wainer, and Wang (1999) and Cai (2010)). For randomized items, introducing random

effects for item parameters is often used (e.g., Sinharay et al. (2003) and De Boeck

(2008)).

The literature that focuses on three features simultaneously is very limited. However,

within one unified framework, Wang et al. (2013) developed a new class of state space

models, called Dynamic Item Response (DIR) models, to describe the dynamic growth

of an individual’s latent trait,that account for local dependence and address uncertainty

of test items in the testing. In this regard, their work is pioneering but they ignored

the usage of the response time information (often easily obtained during computerized

tests) to aid the estimates of one’s ability.

Thissen (1983) showed that the separate analysis of response accuracy and response

time in a test would be misleading. The analysis of Ferrando and Lorenzo-Seva (2007),

Van der Linden et al. (2010) and Ranger and Kuhn (2012) further demonstrated that

using response times as auxiliary information can both improve the precision and reduce

the bias of the estimates of IRT parameters. Therefore, the joint analysis of response

times with item responses in a computerized (adaptive) testing will be a significant

advancement of DIR models.



19

2.1.2 Recent Developments for Modeling Response Times in

Educational Testing

To model the response time of an item, one way is to treat it as a causal factor for the

accuracy of that item (e.g., Roskam (1997) and Wang and Hanson (2005)). Another

idea regards response accuracy as a casual factor for the response time (e.g., Gaviria

(2005)). However, both ideas have been criticized since the response time and accuracy

of a test may not be directly related. Instead, the third way is to jointly model response

times and item responses in a hierarchical fashion.

There are two distinct classes of joint modeling, based on different views of the

relationship between response accuracy and response times. The first category conceives

of a speed-accuracy tradeoff (Luce (1986)) or a variation of that. A popular choice in

the stage of modeling response times is Thissen (1983) model, i.e., taking the natural

logarithm of response times and modeling that as follows,

logRi,l = µ+ νi + τl + βL(θi − dl) + ζi,l, (2.2)

where Ri,l indicates the time used for l-th question by i-th person, νi is the speediness

parameter, which takes account the time that person spends for infinitely easy set of

problems, τl is the slowness intensity of a question, which dictates the time taken due

to the nature of the problem, µ is the overall mean, ζi,l is the residual, β is a slope and

L(x) denotes a linear function mapping how the distance of ability and item difficulty
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connect with response times.

There are two popular choices for L(x), one is a monotone mapping (e.g., Thissen

(1983) and Gaviria (2005)), reflecting the idea that the larger the distance is, the more

time it costs; the other is an inverted-U (I-U) shaped mapping, originating from the

findings (e.g., Wang (2006) and Wang and Zhang (2006)) in educational testing that

examinees generally spend more time on items that match their ability levels, while

spend less time on items either too easy or too hard. Ferrando and Lorenzo-Seva (2007)

and Ranger and Kuhn (2012) also employed the inverted U-shape for regressing response

times in the analysis of personality and psychology tests. Intuitively, the negative β in

front of L(x) for either monotone or inverted U-shaped mapping makes more sense in

reality.

The second category (e.g, Van der Linden (2007), Klein Entink (2009) and Loeys,

Rosseel, and Baten (2011)) utilizes a hierarchical framework to jointly model response

times and accuracy but without specifying explicit relationship between them. Instead,

they assigned joint multivariate normal priors to link parameters of the joint models.

However, all existing joint models are centered on one-time exam for testers without

considering the features in computerized testing. In this paper, we aim to fill in this gap.

Enlightened by DIR models, we will propose the idea of jointly incorporating response

times with response accuracy for testing data collected at irregular and individual varying

time points.
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2.1.3 Preview

In section 2, we will put forward a new class of joint models for IRT models with re-

sponse times, which will be called dynamic item responses and response times models

(DIR-RT models). In the response model we propose I-U shaped linkage. Because of the

complexity of the model considered, Bayesian methods and Markov Chain Monte Carlo

(MCMC) computational techniques will be employed. Section 3 will present the statis-

tical inference procedures. Section 4 validates Bayesian inference procedure proposed

with some simulations and compare the performance of DIR-RT models with respect to

DIR models. We illustrate the application of DIR-RT models to MetaMetrics testbed

datasets. In section 5, we further provide an empirical justification of the goodness of

the fit for DIR-RT with I-U shaped linkage. In Section 6, we point out some significant

psychological results from the analysis of MetaMetrics dataset and show the direction

for our future studies.

2.2 Joint Models of Dynamic Item Responses and

Response Times (DIR-RT)

Clearly to jointly model (2.1) and (2.2), it will maximize the information to infer one’s

ability θi and the item difficulty dl. Besides, notice earlier that conducting a separate

analysis of response accuracy or response time alone will be misleading since timed tests
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usually involve accuracy and time spent as two dimensions. Thus, these motivate us

to propose a two-stage joint model. The first stage has two sub-models to concurrently

model the observations of response time and response accuracy with certain sharing

parameters, and the second stage introduces a dynamic model to capture changes of

latent traits over time. Although our investigation begins with an extension on one-

parameter IRT, it would be straightforward to generalize it to two-parameter or three-

parameter IRT models.

2.2.1 First Stage: The Observation Equations in DIR-RT mod-

els

(2.1) or (2.2) from the current literature are based on an one-time exam for each test

taker, a much simpler situations than that of a computerized test. To accommodate the

complication, we first expand the labels of notations.

Let Xi,t,s,l be the item response to indicate the correctness of the answer of the l-th

item in the s-th test on the t-th day given by the i-th person, where i = 1, · · · , n (number

of subjects); t = 1, · · · , Ti (number of test dates); s = 1, · · · , Si,t (number of tests in a

day); and l = 1, · · · , Ki,t,s (number of items in a test). Likewise, denote the difficulty

of the l-th item as di,t,s,l. It is ideal to record the time for each tester spending on a

single item, however, in practice, more often the time spent on the entire exam is merely

stored for each individual. This is a case for reading comprehension tests in MetaMetric
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testbed. Then, in our proposed models, the response time is defined at the test level,

i.e., Ri,t,s, implying the time spent on s-th test for the i-th individual on the t-th day;

whereas, our models can be easily revised to cope with the response time stored for each

item whenever such data is available.

The label extension illustrates two major features of computerized (adaptive) testing:

1) the rarity of replication of items among different time, tests and test takers; 2) the

observations being recorded at individually-varying and irregularly-spaced times points.

Here, Xi,t,s,l’s and Ri,t,s’s are observed. Usually, the response time is naturally bounded

above zero, and a logarithmic transformation of Ri,t,s will be taken to remove its skewness

in our models.

The Observation Equations of Item Responses

Often in a design of computerized tests, item difficulty, i.e., di,t,s,l, is a randomized param-

eter, assuming to be randomly drawn from a bank of item with certain ensemble mean.

di,t,s,l then can be modeled as a measurement error model, where di,t,s,l = ai,t,s+εi,t,s,l with

ai,t,s being an ensemble mean difficulty of items in the s-th test, and εi,t,s,l ∼ N (0, σ2)

with σ2 known according to the test design, N (·, ·) denoting a normal distribution.

Similar as Wang et al. (2013) did, we extend classic IRT models to accommodate the

complication by modeling the observation equation of item responses as

Pr(Xi,t,s,l = 1 | θi,t, ϕi,t, ηi,t,s, ai,t,s) = F(θi,t − ai,t,s + ϕi,t + ηi,t,s + εi,t,s,l), (2.3)
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where θi,t represents the i-th person’s ability on the day t with assuming one’s ability is

constant over a given day, ϕi,t and ηi,t,s take account of daily and test random effects,

respectively, to explain the possible local dependence of item responses. Assume ϕi,t ∼

N (0, δ−1
i ) with its precision unknown and being different for each person. Similarly, let

ηi,t ∼ NSi,t
(0, τ−1

i I |
∑Si,t

s=1 ηi,t,s = 0) with ηi,t = (ηi,t,1, . . . , ηi,t,Si,t
)′ being the vector of

test random effects on the day t for the individual i and I is an Si,t×Si,t identity matrix.

Utilizing precision parameters in place of variance parameters for normal distributions

is because of the convenience in Bayesian computation. The reason of letting ηi,t be

a singular multivariate normal (by setting the test random effects to be zero on a day

t) is to remove any possibility of unidentifiable issues between daily and test random

effects. In the application to MetaMetrics testbed, choose F (x) to be a logistic link due

to the convention in MetaMetrics, where they used logit unit as a linear transformation

of Lexile scale used in their products.

The Observation Equations of Response Times

Van der Linden (2007) mentioned an important notion from the reaction-time research,

when working on a task, a subject has the choice between working faster with lower

accuracy and working slower with higher accuracy. Thissen model and its variations

(see Ferrando and Lorenzo-Seva (2007) and Ranger and Kuhn (2012)) typically represent

such trade-off between speed and accuracy. In the same line we propose the response
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time below in computerized testing situation,

log(Ri,t,s) = µi − νi,t + βL(θi,t − ai,t,s) + ζi,t,s. (2.4)

Here, µi reflects the average response time for i-th respondent in general. νi,t implies the

variation of the speed of the respondent i at the t-th day, with the negative sign indicating

the slower the speed is, the more time needed to spend on the exam. We further assume

the speed for an examinee will not change much during one day, thus the index of the

speed only varies according to individuals and days. Let νi,t follow N (0, κ−1
i ), with an

individual -specific precision parameter κi for the variation and the mean centering at

zero for ensuring identifiability in presence of µi. In the third term, θi,t − ai,t,s indicates

the distance between the ith person’s ability on the tth day and the difficulty level for

the s-th test on that day; L(x) is a function to characterize the relationship between the

distance and the response time; and β is a regression coefficient to adjust the influence

of the distance function to the response time. Based on the intuition, the mechanism

that controls the influence of the distance function to the response time is more or

less the same among different tests and individuals, thus β is assumed to be a common

parameter across different individuals and tests. ζi,t,s ∼ N (0, %−1) is a residual term with

a common precision parameter of % to borrow strength of the data across different tests

and individuals. Although % varying across may be an alternative, such an assumption

might cause identifiability issue with precision parameter κi when we encounter the
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situation that an examinee only takes one test per day. For L(x), we have two popular

choices from the current literature. They are, L(x) = x, the monotone relationship and

the other is L(x) = |x|, the inverted-U shaped relationship. In our case, we believe the

theory of I-U shaped linkage ( as suggested by Wang and Zhang (2006) ) is applicable

especially in the context of multi-time test takers. We also justify the relationship based

on empirical findings from MetaMetrics data. Later in Chapter 2 we address model

selection issues and we compare the fit of I-U shaped linkage with its competing linkage,

namely monotone shaped. From the fit comparison results as demonstrated in Chapter

2, we find I-U shaped linkage choice is justified.

2.2.2 Second Stage: System Equations in the DIR-RT Models

Following the idea of Wang et al. (2013), we combine both parametric growth models

and Markov chain models for modeling an individual’s ability growth over time. Then,

the model to describe his/her current ability θi,t is,

θi,t = θi,t−1 + ci(1− ρθi,t−1)∆+
i,t + wi,t. (2.5)

The first term in (2.5) denotes the ability at the previous time point, θi,t−1. The second

term represents a parametric growth model with ci as the average growth rate of the i-th

person’s ability over time, where ∆+
i,t = min{∆i,t, Tmax} is the time lapse between two

test dates for ith invididual (i.e., ∆i,t) but truncated by a pre-specified maximum time
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interval Tmax (Tmax = 14 used in the application); ρ is the parameter to control the rate

of one’s growth, which reduces the growth rate when the ability becomes mature. Note ρ

is known from empirical experiments in MetaMetrics datasets ( details on identifiability

issues between ρ and ci, if ρ is treated unknown , are discussed in Wang et al. (2013)).

Last wi,t,∼ N (0, φ−1∆i,t) represents the random component of the change in the i-th

person’s ability on the t-th day with φ being a common unknown parameter to borrow

information and to avoid a substantial risk of confounding in the likelihood between

δi’s and φ−1∆i,t when the time lapse between tests for the student are equally spaced.

This assumption of wi,t presumes that the changes of one’s ability change is much more

uncertain, if he/she is absent for a long period. The system equation (2.5) can also be

rewritten as a first-order Markov process (see Step 2 of Appendix A), which is beneficial

for conducting MCMC later.

2.2.3 A Summary of DIR-RT Models

To summarize, the proposed one-parameter DIR-RT models have two-stages, the 1st

stage is composed of observation equations, while the 2nd stage is composed of system
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equations,

2nd stage: θi,t = θi,t−1 + ci(1− ρθi,t−1)∆+
i,t + wi,t,

1st stage: Pr(Xi,t,s,l = 1 | θi,t, ϕi,t, ηi,t,s, ai,t,s, εi,t,s,l)

=
exp(θi,t − ai,t,s + ϕi,t + ηi,t,s + εi,t,s,l)

1 + exp(θi,t − ai,t,s + ϕi,t + ηi,t,s + εi,t,s,l)
,

log(Ri,t,s) = µi − νi,t + βL(θi,t − ai,t,s) + ζi,t,s,

where Ri,t,s and Xi,t,s,l are observed; ai,t,s’s, ρ, ∆+
i,t’s and ∆i,t’s are known and εi,t,s,l ∼

N (0, σ2) with known σ2. Moreover, we have the following distribution assumptions.

ϕi,t ∼ N (0, δ−1
i ), ηi,t ∼ NSi,t

(0, τ−1
i I |

∑Si,t

s=1 ηi,t,s = 0), wi,t ∼ N (0, φ−1∆i,t), ζi,t,s ∼

N (0, %−1) and νi,t ∼ N (0, κ−1
i ). Here, L(θi,t − ai,t,s) either equals to monotone relation-

ship, i.e., (θi,t − ai,t,s) or inverted U shape, i.e., |θi,t − ai,t,s|.

2.3 Statistical Inference and Bayesian methodology

As discussed in the section 1.5 we note that a frequentist’s approach implementing

Expectation Maximization (EM) or some version of that or marginalized maximized

likelihood estimators ( MML) is almost next to impossible to compute due to extremely

complex nature of likelihood. In addition, some parameter spaces are restricted, which

renders the EM or MML method extremely intractable. On top of that standard error es-

timates of the estimators are not very reliable. On the other hand Bayesian methodology
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not only simplifies modeling and estimating the uncertainties, thanks to advancements

in MCMC techniques, Bayesian computation is way simpler and easy to be extendable

to other complex variants of the model. Next we describe and implement a fully (in

contrast to those empirical Bayes implementation or similar implementation) Bayesian

methodology.

2.3.1 Prior Distribution for the Unknown Parameters

Prior choice is crucial in any Bayesian analysis. In absence of expert’s knowledge or

historical information, objective priors are used for the unknown parameters to avoid

the large impacts of priors on the inference and to have some good frequentist prop-

erties (Berger (2006)). Whenever, there are scientific knowledge available, we instead

incorporate such information into the prior specification.

Following these rules, a natural choice for the prior of one’s initial latent ability is

θi,0 ∼ N (µGji
, VGji

), where µGji
and VGji

are the mean and the variance of the subpop-

ulation (j) to which an individual i belongs. Since ci’s in the system equation (2.5) is

the average growth rate and usually a learning rate in educational context is positive,

then we choose the prior for ci as

π(ci) ∝ 1(ci ≥ 0), for all i,

where 1(·) is an indicator function. For the precision parameter of the speed (κi) and the
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random error (%), we utilize the usual scale objective prior, i.e., π(%) ∝ 1/%, and π(κi) ∝

1/κi for all i. However, for the prior choice of scale parameters δi’s, τi’s and φ, we make

the same choices as that of Wang et al. (2013) because of the requirement of posterior

propriety, which assign them objective priors π(φ) ∝ 1/φ3/2, π(δi) ∝ 1/δ
3/2
i , and π(τi) ∝

1/τ
3/2
i for all i. Further, a natural choice of the objective prior for µi, the average response

time of each individual, is a constant prior, π(µi) ∝ 1, for all i. Similarly, assume the

prior of β is π(β) ∝ 1. Although intuitively, the regression coefficient β in the observation

equation of response times with a negative sign makes more sense, we let the real data

help us determine the value and the sign of β.

2.3.2 Posterior Distribution and Data Augmentation Scheme

Using the fact that a standard logistic distribution can be expressed as a scale mixture

of normals (Andrews and Mallows (1974)), one can write the density of Y , assuming Y

follows a logistic distribution with location parameter 0 and scale π2/3, as follows,

f(y) =
e−y

(1 + e−y)2
=

∫ ∞
0

[
1√
2π

1

2ν
exp

{
−1

2
(
y

2ν
)2

}]
π(ν)dν , (2.6)

where ν has the Kolmogorov-Smirnov(K-S) density,

π(ν) = 8
∞∑
α=1

(−1)(α+1)α2ν exp{−2α2ν2}, ν ≥ 0.
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Note that the density in square brackets in (2.6) is N (0, 4ν2).

Applying the data augmentation idea (Tanner and Wong (1987)), a latent variable

Yi,t,s,l can be introduced for each response variable Xi,t,s,l, where Yi,t,s,l ∼ N (θi,t−ai,t,s +

ϕi,t + ηi,t,s + εi,t,s,l, 4ν
2
i,t,s,l) and Pr(Xi,t,s,l = 1|θi,t, ai,t,s, ϕi,t, ηi,t,s, εi,t,s,l) = P(Yi,t,s,l >

0|θi,t, ai,t,s, ϕi,t, ηi,t,s, εi,t,s,l). Let us define Xi,t,s,l = 1 if Yi,t,s,l > 0 and Xi,t,s,l = 0 oth-

erwise, and the introduction of Yi,t,s,l can facilitate the MCMC computation although

it introduces more unknowns. Since εi,t,s,l
i.i.d.∼ N (0, σ2), marginalizing out it results in

Yi,t,s,l ∼ N (θi,t−ai,t,s+ϕi,t+ηi,t,s, 4ν2
i,t,s,l+σ

2). Then, the one-parameter DIR-RT models

(2.3), (2.4) and (2.5) can be rewritten as

θi,t = θi,t−1 + ci(1− ρθi,t−1)∆+
i,t + wi,t,

log(Ri,t,s) = µi − νi,t + βL(θi,t − ai,t,s) + ζi,t,s,

Yi,t,s,l = θi,t − ai,t,s + ϕi,t + ηi,t,s + ξi,t,s,l,

where ξi,t,s,l ∼ N (0, ψ−1
i,t,s,l) with ψ−1

i,t,s,l = 4γ2
i,t,s,l+σ

2 and γi,t,s,l ∼ K-S distribution, wi,t ∼

N (0, φ−1∆i,t), ϕi,t ∼ N (0, δ−1
i ), ηi,t ∼ NSi,t

(0, τ−1
i I |

∑Si,t

s=1 ηi,t,s = 0), νi,t ∼ N (0, κ−1
i )

and ζi,t,s ∼ N (0, %−1).

Define θ = (θ1, · · · , θn)′ with θi = (θi,0, θi,1, · · · , θi,Ti)′; c = (c1, · · · , cn)′, τ = (τ1, · · · , τn)′, δ =

(δ1, · · · , δn)′, µ = (µ1, · · · , µn)′ and κ = (κ1, · · · , κn)′; Y = {Yi,t,s,l}, γ = {γi,t,s,l} and

X = {Xi,t,s,l}; ϕ = {ϕi,t} and ν = {νi,t}; logR = {logRi,t,s}, η = {ηi,t,s} and η∗i,t =

(ηi,t,1, · · · , ηi,t,Si,t−1)′; where l = 1, · · · , Ki,t,s, s = 1, · · · , Si,t, t = 1, · · · , Ti and i =



32

1, · · · , n. Given the data (X, logR), the joint posterior density of (θ, Y, c, τ, ϕ, η, φ, β, ν, µ, %, γ)

of our proposed DIR-RT models is

π(θ, Y, c, τ, ϕ, η, φ, β, ν, µ, %, γ | X, logR)

∝


n∏
i=1

Ti∏
t=1

Si,t∏
s=1

Ki,t,s∏
l=1

π(γi,t,s,l)


{

n∏
i=1

π(θi,0)π(ci)π(δi)π(τi)π(κi)

}
π(β)π(φ)π(%)

×


n∏
i=1

Ti∏
t=1

Si,t∏
s=1

Ki,t,s∏
l=1

[1(Yi,t,s,l > 0)1(Xi,t,s,l = 1)1(Yi,t,s,l ≤ 0)1(Xi,t,s,l = 0)]

×
√
ψi,t,s,l

2π
exp

(
−ψi,t,s,l(Yi,t,s,l − θi,t + ai,t,s − ϕi,t − ηi,t,s)2

2

)
1

ηi,t,Si,t
= −

Si,t−1∑
s=1

ηi,t,s


×

{
n∏
i=1

Ti∏
t=1

√
δi
2π

exp

(
−
δiϕ

2
i,t

2

)}{ n∏
i=1

Ti∏
t=1

( τi
2π

)(Si,t−1)/2

exp

(
−
τiη
∗′
i,tΣ

−1
i,t η

∗
i,t

2

)}

×

{
n∏
i=1

Ti∏
t=1

√
φ

2π∆i,t

exp

(
−
φ[θi,t − θi,t−1 − ci(1− ρθi,t−1)∆+

i,t]
2

2∆i,t

)}

×
n∏
i=1

Ti∏
t=1

Si,t∏
s=1

√
%

2π
exp

(
−%(log(Ri,t,s)− µi + νi,t − βL(θi,t − ai,t,s))2

2

)

×
n∏
i=1

Ti∏
t=1

√
κi
2π

exp

(
−
κiν

2
i,t

2

)
, (2.7)

where Σ−1
i,t = JSi,t−1 + ISi,t−1, with JSi,t−1 being a (Si,t − 1) × (Si,t − 1) unit matrix,

π(θi,0), π(ci), π(δi), π(τi), π(κi), π(β), π(φ), and π(%) are the priors specified in 3.1; and

π(γi,t,s,l) is the K-S density. The proof of posterior propriety of DIR-RT models closely

follows from a simple extension of Appendix C in Wang et al. (2013) for DIR models.

The major difference of DIR-RT and DIR models is the part that conjointly models

response times with item responses. Since the logarithm of response times is modeled
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as a normal regression model, the well established facts for the posterior propriety of

normal regression models in Bayesian literature for the objective priors specified in 3.1

can be coupled with results from Appendix C in Wang et al. (2013) to show the posterior

propriety of DIR-RT models.

2.3.3 MCMC Computation of DIR-RT Models

The computation is carried out by MCMC scheme that samples from the posterior (2.7)

via block Gibbs sampling schemes. The difficulty of the sampling scheme is to draw

the posterior distribution of latent ability θi = (θi,0, · · · , θi,Ti)′ for each individual i,

for i = 1, · · · , n, where coordinates of θi are typically high dimensional and strongly

correlated. When L(x) = x, using the novel data augmentation idea, the proposed

model is transformed so that θi could be block sampled – within a Gibbs sampling

step conditional on the other parameters – by the highly efficient forward filtering and

backward sampling algorithm (West and Harrison (1997)). However, if L(x) = |x|, the

computation becomes more challenging as θi cannot be drawn as a block. Instead, we

utilize the fact that given all the other unknowns, the full conditional distribution of

each coordinate θi,t follows a mixture of truncated Gaussians, so that θi,t can be drawn

one at a time, thus being integrated as an extension of MCMC chain.

The details of MCMC steps are given in Appendix A. The Gibbs sampling starts

at Step 1 in Appendix A, with initial values for θ(0), c(0), φ(0), ϕ(0), η(0), δ(0), τ (0), γ(0),

µ(0), ν(0) and β(0), then loops through Step 15 in Appendix A, until the MCMC has
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converged. The initial values chosen in the applications were θ(0) = ~0, c(0) = ~0, φ(0) = 1,

ϕ(0) = ~0, η(0) = ~0, δ(0) = ~1, τ (0) = ~1, γ(0) = ~1, µ(0) = ~1, ν(0) = ~0 and β(0) = 0. The

convergence was evaluated informally by looking at trace plots.

Then, statistical inferences are made straightforward from the MCMC samples. For

example, an estimate and 95% credible interval (CI) for the latent trajectory of one’s

ability θi,t can be plotted from the median, 2.5%, and 97.5% empirical quantiles of the

corresponding MCMC realizations. In examples, ability will be graphed as a function of

t, so that the dynamic changes of an examinee is apparent.

2.4 Simulation Study

To validate the inference procedure and compare the benefits by jointly modeling re-

sponse times with item responses, a simulation study was conducted with similar set-up

as laid out in section 4 of Wang et al. (2013). To save the space, we only illustrate

the situation when the simulation model for response times indeed follows an inverted

U-shaped linkage for the distance of ability-difficulty with response times. Similar re-

sults can be obtained if we had proceeded with monotone shape linkage. The simulation

method considers multiple individuals taking a series of tests scheduled at individually-

varying and irregularly-spaced time points.
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2.4.1 DIR-RT Models Simulation

Following the simulation study of DIR models in Wang et al. (2013), assume there are 10

individuals, each of them has taken four tests on 50 different test dates, where each test

contains 10 items. The specification means Ki,t,s = 10, for s = 1, · · · , Si,t, t = 1, · · · , Ti,

i = 1, · · · , n with Si,t = 4, Ti = 50 and n = 10. Let time lapse between two consecutive

test dates be ∆it, where ∆it = t + 10 if t ≤ Ti/2 or ∆i,t = t − 10 otherwise, creating a

irregularly spaced gap between two test dates.

In order to do the comparison of DIR-RT models with DIR models, we assign same

values of the parameters, φ, δi, τi, ci used in Wang et al. (2013), where φ = 1/0.02182,

leading standard deviation of wi,t in system equation (2.5) is 0.0218
√

∆i,t and the values

of δi, τi, ci are specified in Table 2.1. For the modeling part of response times, the

parameter values of κi and µi are shown in Table 2.1,

i 1 2 3 4 5 6 7 8 9 10
c 0.0055 0.0065 0.0026 0.0037 0.0061 0.0047 0.0035 0.0043 0.0039 0.0015
δ 2.0408 1.3333 1.8182 1.2346 1.5873 1 2.2222 1.0526 1.1494 2
τ 4 3.1250 4.3478 2.7027 3.7037 2.8571 4 2.2222 9.0909 4.5455
κ 2.3256 1.5873 1.6949 0.5495 1.2658 0.9346 1.3889 1.8182 2.7027 1.2195
µ 1.6 1.47 1 1.92 1.45 1.73 1.5 1.35 0.81 1.23

Table 2.1: Values of the parameters used in DIR-RT simulation

β = −0.17 and % = 1.25. The parameters of DIR-RT models are chosen in such a

way that they are in order of same magnitude to mimic the real data from MetaMetrics

company.

Consider the inverted U shape linkage for L(x), i.e., L(x) = |x|. Simulation proceeds
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by simulating random effects or latent variables using the assigned parameter values

above for DIR-RT models. Once we get the simulated values for θi,t using 2nd stage

model in 2.3, the test difficulties, ai,t,s in 1st stage model is set to be θi,t + ζ∗, where ζ∗

is a random variable with uniform distribution on (−0.1, 0.1). The values of εi,t,s,l are

drawn from N (0, σ2) with σ = 0.7333 and we choose ρ = 0.1180. Notice the values of σ

and ρ are used in MetaMetric application. The dichotomous data of item responses and

continuous data of response times generated from the simulation are our observations,

and the Bayesian methodology from section 3 is implemented in estimating the model

parameters of DIR-RT models.

The parameters are estimated through posterior median calculated from their cor-

responding MCMC samples. Each MCMC was run for 50,000 iterations with a 25,000

burn-in period. Figure 2.1 (a)-(d) give posterior median estimates (red squares) along

with 95% CIs (red bars) of c, τ−1/2, δ−1/2, κ−1/2 and µ, respectively and illustrate their

true values (black dot). Clearly from Figure 2.1, the true values of those parameters

are contained within their corresponding 95% CIs. For the posterior median estimates

of parameters φ−1/2, %−1/2, β are 0.0190, 0.9075, −0.1815, respectively, with their corre-

sponding 95% CIs being [0.0159, 0.0229], [0.8753, 0.9427], and [−0.7028,−0.0071], all of

which contain their true values.

Next, we turn our focus to the primary interest for estimating latent ability trajec-

tories. Figure 2.2 (a)-(d) illustrate four types of growth curves in our simulation, where

(a) θ1 represents an individual with steady growth; (b) θ2 indicates an individual with



37

0

0.002

0.004

0.006

0.008

0.01

0.012

c
1

c
2

c
3

c
4

c
5

c
6

c
7

c
8

c
9

c
10

 

 

True data

Posterior Median

95% Credible Interval

(a) ci’s

0

0.5

1

1.5

τ
1

τ
2

τ
3

τ
4

τ
5

τ
6

τ
7

τ
8

τ
9

τ
10

δ
1

δ
2

δ
3

δ
4

δ
5

δ
6

δ
7

δ
8

δ
9

δ
10

 

 

True data

Posterior Median

95% Credible Interval

(b) τ
−1/2
i ’s and δ

−1/2
i ’s

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

κ
1

κ
2

κ
3

κ
4

κ
5

κ
6

κ
7

κ
8

κ
9

κ
10

 

 

True data

Posterior Median

95% Credible Interval

(c) κ
−1/2
i ’s

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

µ
1

µ
2

µ
3

µ
4

µ
5

µ
6

µ
7

µ
8

µ
9

µ
10

 

 

True data

Posterior Median

95% Credible Interval

(d) µi’s

Figure 2.1: Posterior Summary of ci’s, τ
−1/2
i , δ

−1/2
i ’s, κ

−1/2
i ’s, and µi’s, where red cir-

cles represent true values, red squares are the posterior median estimates and red bars
indicate 95% CIs.
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increasing growth but nearly flat region at the end; (c) θ4 shows an individuals with

interrupted growth (with true ability drops in certain period); (d) θ8 displays monotonic

growth with decreasing growth rate in the middle. In Figure 2.2, the true ability curves

(black dots) have been plotted along with our posterior median estimates of ability

(blue circles) and their corresponding 95% credible band (starred lines). Notice in each

subfigure, very small proportion of true values are outside of 95% credible bands.

To better assess how well the Bayesian methodology actually captures the truth, we

use the coverage probability (CP), represented by the frequency of true values falling

in the corresponding CIs over different MCMC runs. To evaluate CPs, we conduct the

simulation with the same setting specified eariler but with 10 different sets of seeds for

random number generations. The CPs for %, β, φ are 90%, 100% and 90%, respectively

and the average CPs over all individuals for κi’s, ci’s, τi’s, δi’s and µi’s are 94%, 96% ,

92%, 95% and 95%, respectively. In addition, the average CPs for one’s ability across

different time, i.e., for θ1, · · · , θ10, are 97%, 95.6%, 96.2%, 97.4%, 94.6%, 98.4%, 97.8%,

95.2%, 97.8% and 96.0%. Thus, while the inferential method is Bayesian, it seems to

yield sets that have good frequentist coverage.

Figure 2.3 displays the growth curve of two selected individuals (i.e., θ2 and θ6), where

the statistical inference is based on the simulated example in 2.4. For other individuals,

results are the similar and to save the space, we omit the plots for others. In Figure 2.3

(a) and (b), 95% CIs of DIR models (dotted red lines) encompass 95% CIs of DIR-RT
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(a) 1st individual
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(b) 2nd individual
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(c) 4th individual
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(d) 8th individual

Figure 2.2: The latent trajectory of one’s ability growth, where black dots, blue circles
and starred lines represent true ability, the posterior median estimates and the 95%
credible bands, respectively.
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models (starred blue lines), both 95% CIs contain the true values (black dots). The

average length of 95% credible band of ability estimates for DIR-RT models is much

shorter than that of DIR models (0.6454 vs 1.0370 for θ2 and 0.6772 vs 1.1401 for θ6,

respectively). In addition, notice that in Figure 2.3, both graphs of DIR-RT for ability

estimates (blue circles) adhere more closely to true ability (black dots) in relative to DIR

ability estimates (red dots). The average mean squared distance between the truth and

the posterior median ability estimates over time for DIR-RT models are 0.0240 for θ2

and 0.0187 for θ6, in comparison to that of DIR models are 0.0711 for θ2, and 0.0653 for

θ6. The results illustrate that by incorporating response times, we can largely improve

the precision and remarkably reduce the bias of the estimates of one’s ability trajectory.

2.5 MetaMetric Testbed Application

For illustration purpose, we randomly select a sample of 25 individuals from MetaMetrics

testbed datasets. There are different characteristics for each student as shown in Table

2.2.

Total Tests Days Max. Tests/Days Range of Items/Test Max. Gap Initial Grade
No.1 150 74 9 4-22 79 4
No.2 203 128 15 6-24 107 2
No.3 211 107 9 5-24 79 3

Table 2.2: Characteristics of the first 3 individuals randomly sampled from the Meta-
Metrics data

To save space, we only show the details for the first three individual we selected. The



41

0 200 400 600 800 1000 1200 1400
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

T

θ
2
 :

2
n

d
 i
n

d
iv

id
u

a
l’s

 a
b

ili
ty

 

 

Posterior Median(DIR−RT)

Posterior Median(DIR)

True θ
i,t

 values

95% Credible Band(DIR−RT)

95% Credible Band(DIR)
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Figure 2.3: The comparison of ability estimates between DIR-RT and DIR models, where
black dots, blue circles, red dots represent true mean ability, DIR-RT ability estimates,
DIR ability estimates respectively; starred-lines (blue) and dash (red) lines represent
95% credible bands for DIR-RT and for DIR respectively.



42

primary focus of this application is to study the following goals: 1) assessing the appro-

priateness of the local independence assumption for this type of data; 2) understanding

the growth in ability of students, by retrospectively producing the estimated growth

trajectories of their abilities in the study; 3) investigating whether the proposed linkage,

that is inverted-U shaped linkage between response times and the distance of ability-

difficulty to model students’ behaviors and psychology in the exam can be justified in

light of the data.

2.5.1 Using Lindley’s Method to Test the Significance of I-U

Shaped Linkage

The regression slope β plays a key role in controlling the influence of the ability-difficulty

distance function to the response time. It is easy to note that DIR models are nested

with DIR-RT models. When β becomes 0 collateral information due to response time

model does not add to improve the estimates of response model. Thus significance of

I-U shaped linkage based on response time model depends on the value of regression

coefficient β. Thus, we are interested in testing H0 : β = 0 versus H1 : β 6= 0, since

β = 0 implies the distance between ability and difficulty does not affect the time that

individual spends on a test and the corresponding linkage function L(·) can be ignored.

Lindley’s method (Lindley (1965), Section 5.6), advocated by authors such as Zellner

(1971), is an ad hoc way to test this. According to Lindley’s method, one rejects the
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hypothesis : β = 0 at the α level of significance if the 100(1 − α)% highest posterior

density interval does not include 0. The posterior density of β is in bell shapes (Please

see the left histogram in Figure 3.4 ). So 100(1− α)% highest posterior density interval

is the same as 100(1− α)% CI.

Model(β) Inverted U-shape
PM −0.2305

95% CI (−0.2940,−0.1571)
99% CI (−0.3105,−0.1345)

Table 2.3: The posterior summary of β under inverted U-shape, where ‘PM’ in the table
is the abbreviation for ‘posterior median’.

It is evident from Table 2.3 that β = 0 is rejected at both α = 1% and α = 5% for

inverted U-shape. This phenomenon strongly suggests that there is a inverse relation-

ship (negativity of β value) between inverted U shaped linkage and response time. We

shall re-visit the same model selection issue in Chapter 2 and I-U shaped linkage would

be validated while compared with other competing alternatives with the help of a novel

model selection criterion.

2.5.2 Retrospective Estimation of Ability Growth Under I-U

Shaped Linkage

As Lindley’s Method supported the choice of inverted U-shape linkage for the analysis of

our proposed DIR-RT models for MetaMetrics data, we are going to use inverted U-shape

through the rest of the paper accomplish other two goals mentioned at the beginning of

this section. Figure 2.4 presents a retrospective analysis of the reading ability for 3rd,
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10th, 18th and 24th individuals (using all data recorded of each individual during the

study period). In Figure 2.4, the red circles are the posterior median estimates of each

individual’s ability, the red dash lines correspond to the 2.5% and 97.5% quantiles of the

posterior distributions of the abilities, and the black plus points are raw scores. Similar

as Wang et al. (2013), we find all these growth trajectories have an overall increasing

trend but such kind of growth can be interrupted. In particular, when there is a large

time gap between subsequent tests, the ability appears to drop for some individuals,

which is clearly seen from Figure 2.4. Some natural explanations might be that during

vacations, a student may not read and could actually lose ability or they become less

used to computerized tests after a long break.



45

0 100 200 300 400 500 600
−5

−4

−3

−2

−1

0

1

2
The trajectory of latent ability

T

θ
3

 

 

Raw Score

MetaMetric Est

Restrospective Est

95% Credible Band

(a) 3rd

0 100 200 300 400 500 600 700 800
−6

−5

−4

−3

−2

−1

0

1

2

3
The trajectory of latent ability

T

θ
1
2

 

 

Raw Score

MetaMetric Est

Restrospective Est

95% Credible Band

(b) 10th

0 200 400 600 800 1000 1200
−8

−6

−4

−2

0

2

4
The trajectory of latent ability

T

θ
1
8

 

 

Raw Score

MetaMetric Est

Restrospective Est

95% Credible Band

(c) 18th

0 100 200 300 400 500 600 700 800 900 1000
−4

−3

−2

−1

0

1

2

3

4

5
The trajectory of latent ability

T

θ
2
3

 

 

Raw Score

MetaMetric Est

Restrospective Est

95% Credible Band

(d) 24th

Figure 2.4: The posterior summary of the ability growth for θ3, θ10, θ18 and θ24, where
red circles, black plus and blue dots represent posterior median estimates of the ability,
raw score and MetaMetric estimates, respectively and red dash lines represent 95% CIs.
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Figure 2.5 and Figure 2.6 together give the posterior summaries (i.e., the posterior

median (red squared rectangles dot) and 95% CI (red bars at two ends)) of the average

growth rates ci’s, the standard deviations of test random effects τ
−1/2
i ’s, the standard

deviations of the daily random effects δ
−1/2
i ’s, the standard deviations of speediness,

κ
−1/2
i , and the average response time for each individual, µi, for i = 1, · · · , 25. Moreover,

the estimated posterior median of φ−1/2 is 0.0708 and its 95% CI is [0.0608, 0.0831] and

the result of β is shown in the table of Figure 2.3.

Figures 2.5 (a)-(b) show that the standard deviations of test and daily random effects

are almost all quite large with 95% CIs and are well separated from zero. Recall that

these were included in the model to account for a possible lack of the local independence;

the evidence is thus strong that the local independence is, indeed, not tenable for this

data and that both types of random effects are present for most individuals. Additionally,

Figure 2.5 (c) illustrates that speediness of individuals is different on the daily basis

except that of individual 22nd (almost steady during the studying period). Moreover,

there are clearly some patterns of the variation of speediness for individuals, some of

them, the difference of their speediness on a daily basis is more crucial than that of the

others. The variation in the average response time in Figure 2.5 (d) suggests also some

individuals take longer time to finish a test than others. As well, it is not surprising the

average growth rates are quite different for each individual as shown in Figure 2.6.
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(b) The posterior medianand 95% CI of τ
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(c) The posterior median and 95% CI of κ
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(d) The posterior median and 95% CI of µ

Figure 2.5: Posterior summary of c, τ−1/2, δ−1/2, κ−1/2 and µ

2.6 Discussion

From our simulation study, we noticed that incorporation of response time into the item

response model for the analysis of individually varying and irregular spaced longitudinal

observations has both significantly improved the precision and reduced the bias for the

ability estimation for the proposed models. Using DIR-RT models to analyze MetaMetric

datasets, the results further support findings of Wang et al. (2013). For example, the

evidence of violation of the local dependence assumption is generally strong in DIR-RT

models, and use of test and daily random effects to model the local dependence seems

to be necessary and successful. The retrospective analysis of ability estimation is of
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Figure 2.6: The posterior median and 95% CI of c

considerable use in understanding population behavior, such as the frequently observed

drops in ability after a long pause in testing.

The result favors the inverted U-shape linkage, which is quite important and mean-

ingful conclusion, since it supports that in such tests the psychology of students in a test

is to spend more time on items or questions that match their ability levels and spend

less time on those, either too easy or too hard. In the next Chapter we formally develop

an approach to compare models within DIR-RT framework and show that IU shaped

linkage is the best choice with respect to this newly developed measure, thus confirming

the results we established in this Chapter. We would like to add here that using response

time as an extra information helps improve the estimates of response model also.

Many extensions are possible, such as extensions to two-parameter and three-parameter

DIR-RT models ( as mentioned before also). Figure 2.5 clearly illustrates some patterns

among individuals for the average growth rate ci’s, the variation of speediness κi’s,

and the average response time µi’s. Next step could also be to consider , using either
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model-based or distance-based clustering methods, to further investigate the presence

of groups of different some psychological behavioral patterns. It is anticipated that the

clustering can further help teachers better assist their students and achieve the goals of

personalized education.
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Chapter 3

Model Selection in DIR-RT

Framework

3.1 Introduction and Motivation

Though recent literature showed evidence in favor of I-U shaped models (Wang and

Zhang (2006)), one can raise a question if this is truly the only alternative. Based on

recent research work, it can be argued that DIR-RT models are quite flexible framework

that tries to marry the two, DIR models and response time models in a reasonable way. A

possible alternative to DIR-RT with I-U shaped linkage would be DIR-RT with monotone

linkage, which is a quite popular linear linkage ( please see Van der Linden (2007)), that

has been around for some time. In addition, within DIR-RT framework this alternative

would be slightly faster to compute, thanks to Forward Filtering Backwards Sampling

(FFBS, West and Harrison (1997)) scheme that works very well within Gaussian family

of distributions as opposed to mixture of truncated Gaussians. So there is computational

trade-off possible between the two. This motivates us to search for the best model among
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these options within DIR-RT framework.

3.1.1 Bayes Factor and DIC as Selection Criteria

One of the popular and simple-to-compute measures is to use posterior odds or Bayes

factor (Jeffreys (1998)). They are equivalent as long as one has an idea of prior odds

as posterior odds is the product of Bayes factor and prior odds. Let M denote the

model we believe is true and let Θ be the parameter vectors present, which may include

latent variables if the model permits so, then posterior odds is the ratio of two posterior

predictive densities where Bayes factor is the ratio of prior predictive densities. In this

method one chooses a model that has maximum posterior probability. Mathematically

prior predictive density given a model is the following integral.

p(Y |M) =

∫
Θ

p(Y | Θ,M)p(Θ |M)∂Θ, p(Θ |M) prior due to model M.

As the dimensionality of the integral increases the computation gets harder. In ad-

dition the parameters may be over restricted spaces. In DIR-RT case this amounts to

integrating over all latent variables like ability as well as γ’s which would not have a

closed form both in I-U shaped and in monotone case. Mathematical approximations

(based on Laplace method or quadratic approximations) of the integral will be equally

complex. Numerical approximation will be out of question because of high dimension-

ality as Monte Carlo based estimates would not be reliable due to insufficient sample
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size.

Another very popular model selection criterion, called deviance information criterion

(DIC), is usually recommended in complex models as it tries to take care of complexity

by penalizing on what is called effective sample size. Since its first introduction by

the seminal paper of Spiegelhalter, Best, Carlin, and Van Der Linde (2002), there have

been many variants of DIC’s such as conditional or complete data DIC and etc, mostly

depending on the need for quick computations. In general, DIC can be defined in the

following way

DIC = D(θ) + 2pD [set h(y) = 1 ] (3.1)

or = −4Eθ|y[log f(y|θ)] + 2 log f(y|θ̃),

where deviance, D(θ) = −2 log f(y|θ) + 2 log h(y) and D(θ), posterior mean deviance,

= −2Eθ[log f(y|θ)|y] + 2 log h(y) and pD is called effective number of parameters and

is given as follows

pD = D(θ)−D(θ̃), θ̃ : posterior mean or mode .

Here, θ denotes the vector of parameters. So the computation of DIC reduces to

computation of mean log likelihood (also called integrated likelihood as no latent vari-

able and/ or no augmented data is involved) under posterior distribution and in applied

problem θ̃ is taken as MAP. This DIC is usually denoted by DIC2. In presence of latent
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variables, say Z, f(y|θ) =
∫
f(y, z|θ)dz , f(y|θ) is often referred to as observed data

likelihood or integrated likelihood where as f(y, z|θ) is referred to as complete-data like-

lihood . But it may not be possible to integrate Z out analytically. So another variant of

DIC, known as DIC5, replaces Eθ[log f(y|θ)|y] by Eθ,Z [log f(y, z|θ)|y], that is estimated

by posterior samples of (θ, Z), and log f(y|θ̃) by log f(y, Ẑ|θ̂), where (Ẑ, θ̂) is joint MAP.

In some cases complete-data like may not be easy to calculate but conditional likelihood

could be easy to calculate. This leads to DIC7, that replaces Eθ,Z [log f(y, z|θ)|y] by

Eθ,Z [log f(y|z,θ)|y] and log f(y, Ẑ|θ̂) by log f(y|Ẑ, θ̂). Nevertheless, some recent stud-

ies have cautioned against the use of the DIC for comparing latent variable models. For

instance, a popular model for count data with over dispersion is the Poisson-log normal

model. Millar (2009) shows that the DIC obtained using conditional Poisson likelihood

is inappropriate. Instead, the DIC calculated using the integrated likelihood seems to

perform well. In this section we shall focus on integrated DIC or observed DIC as defined

in 3.1. For “Monotone” model, integrated likelihood can be shown to have the following

form after few algebraic steps with appropriate choices of α∗, C and Σ, which are only
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functions of fixed parameters.

p(H|Σ, γ, S) ∼ N(α∗, C−1Σ)

p(Y |Σ, γ, S, LogR) ∼ N(α∗Y + (C−1Σ)Y.R(C−1Σ)−1
R.R

(LogR− α∗R), (C−1Σ)Y Y.R)

p(LogR|Σ, γ, S) ∼ N(α∗R, (C
−1Σ)RR)

L(θ|X,LogR) =

∫
γ

p(LogR|Σ, γ, S)

[

∫
A

p(Y |Σ, γ, S)dY ] p(γ)dγ, A : I(x = 1)(−∞, 0) + I(x = 0)(0,∞)

It is evident that even for computationally the simpler case (“Monotone model” be-

cause of its conditional Gaussian structure ) computation is almost next to impossible.

Other numerical or analytical approximations would not work for the same reasons as

mentioned in the earlier section.

3.1.2 Other Approaches

As an alternative to DIC, Bayesian χ2 (Johnson (2004)) approach may be applicable.

Unfortunately this entails computation of CDFs and inverse CDFs conditionally on

parameters. Thus it does not seem to be easy to compute because of the presence of

random effects, which need to be integrated out. We suggest an approach, motivated

by the work of Yao, Kim, Chen, Ibrahim, Shah, and Lin (2015), which is to compute

conditional DIC based on response time model only assuming the ability parameters are
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estimated well.

3.1.3 Preview

In section 2 we introduce the new criterion based on conditional DIC methods and

provide theoretical justifications behind that. In section 3 we provide some simulation

study for the goodness of this criterion and we discuss its performance. In section 4,

we apply this method to choose best models between two linkages in the context of

MetaMetric testbed data and we re-visit choosing the right linkage for response models.

Finally in section 5, we summarize the findings and discuss the limitations of the current

study as well as some future works.

3.2 Partial DIC

We begin with the definition of DIC7 (as in 3.1.1), which replaces the usual likelihood

by conditional likelihood and approximates posterior deviance mean by averaging over

posterior samples of joint of parameters and latent variables.

DICp = −4EΘ|y[log fP (logR|Θ)] + 2 log fP (LogR|Θ̃). (3.2)

Here Θ = (θ,κ,µ, %) and Θ̃ is joint MAP and fP represents the partial density due

to response time only, integrated over ν, conditioned on θ under the model. Exact

computation of the analytical expression is given in appendix B. The above definition
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is motivated by the idea that conditionally treating ability is known DIR model is in-

dependent to response time(RT) model. So conditionally on ability the information due

to change in response time models is only affected by the conditional likelihood due to

response time as information on DIR model remains the same under both the models. So

if ability is estimated reasonably well departures from the true models can be captured

from conditional response time likelihood only.

3.3 Goodness of DICp as A Decision Rule: Simula-

tion Study

To test how our proposed criterion performs in simulated data, we resort back to similar

set-up as described in 2.4. We generate response and response-time data using the same

parameter values as suggested in 2.4 and a specific true linkage. So we vary the seeds

and the linkages to generate various data versions. It is worth noting here that value of

regression coefficient, β, plays a critical role as it distinguishes these two models with two

different linkages. If the value is close to 0 then response time model may be insignificant

and both linkages may not be distinguishable from one other. Similarly higher values of

β help distinguishing the two linkages. Therefore, during simulation study we need to be

careful about the choices of β values. In this simulation study we worked with β = -1,-2

and -10. For each choice of β and L(x) we worked with 10 runs of the data generating

process. To study the goodness of the criterion, DIR-RT models with both linkages are
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fitted to each of these data sets and partial DIC (DICp) is computed based on posterior

samples for each of the linkage models based on the same data-set. A linkage model is

selected based on smaller DICp value. Eventually we study misclassification rates to

evaluate DICp.

3.3.1 Fitting DIR-RT Models on Simulated Data

For I-U shaped linkage it is demonstrated in section 2.4 . Modeling specifications can

be summarized following 2.2.3.

2nd stage: θi,t = θi,t−1 + ci(1− ρθi,t−1)∆+
i,t + wi,t,

1st stage: Pr(Xi,t,s,l = 1 | θi,t, ϕi,t, ηi,t,s, ai,t,s, εi,t,s,l)

=
exp(θi,t − ai,t,s + ϕi,t + ηi,t,s + εi,t,s,l)

1 + exp(θi,t − ai,t,s + ϕi,t + ηi,t,s + εi,t,s,l)
,

log(Ri,t,s) = µi − νi,t + βL(θi,t − ai,t,s) + ζi,t,s.

Note that all the interpretations regarding parameters remain the same as described in

2.2.3. The only change is in the interpretation and in the definition of L(x) function. In

this case L(x) = x as opposed to the I-U shaped linkage ( where it was L(x) = |x|). This

observation gives us a way to modify the full conditionals, given for IU linkage, in this

case. First of all, full conditionals of the parameters and latent variables of the response

model other than θ remain unchanged because of conditional independence as stressed

in 3.2. As for parameters and latent variables of response time model, other than θ,
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analytical expressions of full conditionals need to be modified with the definitions of

L(x). Please see the expressions in appendix A for more details. For full conditionals

of θ please see step 2.1 in appendix A. It is worth noting that similar to DIR models as

in Wang et al. (2013), forward filtering and backward sampling steps can be developed

and are provided in appendix A for simulations from this full conditional distribution.

it is noted that whole implementation for monotone linkage takes 25% the time it takes

for IU shaped model. So there is a significant gain in implementation time.

3.3.2 Performance of DICp

As mentioned in earlier section we present the simulation results here. In Table 3.4,

we first summarize how DICp is reported and misclassification rate is computed and in

Table 3.5 we further summarize by reporting the misclassification rates only for different

values of β and for different data models. In Table 3.4 iter column specifies different seed

combinations for which the data can be reproduced. DICp for Monotone computes the

DICp when we fit monotone linkage model on the data. Similarly DICp for IU computes

DICp when IU model is fitted. Eventually whichever DICp is smaller is chosen as a

better fit, which if matches with the true model produces a ‘Correct’ value for Decision

In table 3.3.2 summary of misclassification rates is given. misclassification rate is simply

defined as % of times DICp makes a wrong decision for different values of β when true

data models are pre-specified.

It is evident from simulation study that DICp performs pretty well in distinguishing
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β Iter (seeds) True Model DICp for Monotone DICp for IU Decision
-0.17 100-50 IU 5857.2 5852.9 Correct

-2 90-1100 Mon 5927.5 5929.5 Correct
...

...
...

...
...

...

Table 3.4: Summary of reporting DICp

β True Model Misclassification rate

-1
IU 10%

Mon 10%

-2
IU 10%

Mon 10%

-10
IU 10%

Mon 10%

Table 3.5: Misclassification rates

the models when true data generating process is one of the models. It has been observed

(but not included here) that if β is chosen a number very close to 0 I-U model gets

preferred always. That is expected because as the value of β decreases distinguishing

power of β decreases too.

3.4 I-U vs Monotone Linkage: MetaMetrics Test

Data

To the best of our knowledge, there has not been any empirical WORK for determining

which among the two linkages L(·) indeed fits the data better for conjointly modeling

response times and item responses, especially when the testing data are collected at

irregular and individual varying time points for a series of computerized (adaptive)
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testing. This lack of research motivates us to conduct an empirical study of MetaMetrics

data-sets for identifying a better linkage. Based on the partial DIC, the inverted U-shape

linkage turns out to fit the MetaMetrics data better, where the DICp for inverted U-

shape is 5661.4 in comparison to that of monotone linkage, which is 5775.3.
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(a) Monotone Linkage
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(b) Inverted U-shaped Linkage

Figure 3.7: The posterior summary of the ability growth of θ10 for two linkages, where
red circles, black plus and blue dots represent posterior median estimates of the ability,
raw score and MetaMetric estimates, respectively and red dash lines represent 95% CBs.
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Figure 3.7 illustrates the ability trajectories using monotone (left) and inverted-U

shape (right) linkage side by side, where red dots presents the posterior median, red

dash lines correspond to their credible bands (CB) and black plus indicates the ‘raw

score’, which is a rough estimate of one’s ability obtained by solving the equation that

the expectation of expected score for a person’s ability is equivalent to the observed

score. Observed for DIR-RT models is that the estimates for the underlying increasing

trend of ability growth are comparatively more robust in case of inverted-U shape than

that of monotone linkage. This phenomenon is shown, for example, in the estimation of

ability for θ10 in Figure 3.7, during the period of 350-500 days and 700-800 days, where

the ability trajectory using inverted U-shape is more reluctant to change its increasing

trend unless there is strong support from data (seen from raw scores (black plus) in

Figure 3.7, where it is computed on the same scale as the θi,t and can be regarded as

the raw data) .

As outlined in section 2.5.1 Lindley’s method suggests β = 0 can not be rejected at

α = 1% for monotone linkage since 99% CI of β under monotone linkage includes 0, while

β = 0 is rejected at both α = 1% and α = 5% for inverted U-shape (see Table 3.6).

This indicates that the monotone linkage has weaker correlation with response times

than the inverted U-shape linkage for MetaMetric datasets. Both Lindley’s Method and

partial DIC criterion support the choice of inverted U-shape linkage for the analysis of

our proposed DIR-RT models.
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Figure 3.8: Two histograms for two linkages; I-U shaped(left), Monotone(right)

Model(β) Inverted U-shape Monotone
PM −0.2305 −0.0627

95% CI (−0.2940,−0.1571) (−0.1125,−0.0137)
99% CI (−0.3105,−0.1345) (−0.1317, 0.0003)

Table 3.6: Posterior summary of β under two models, where ‘PM’ in the table is the
abbreviation for ‘posterior median’.

3.5 Discussion

In longitudinal item response theory, we presented novel modeling framework in which

model comparison is executed to propose best response time linkage for education data,

which allows pupils to come at irregularly spaced time-points to take multiple tests. We

note that computation is very straightforward and easy as response time models are

usually log-normal and reduces the computation significantly compared to other types
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of DIC. This proposed partial DIC performed very well in simulated data. This DIC

should work well as long as response times given ability (R | θ ) is independent to the

response given ability (X | θ) and θ is estimated well. This partial DIC may fall apart

if θ is not estimated well or θ’s system equations are mis-specified or when both occur.

Also it only addresses response-time models sharing the same evolution process of θ. So

if two DIR-RT frameworks have different evolution processes it may fall apart. More

detailed simulation study is required for future work to study how robust it is under

misspecification of the evolution process of θ. Partila DIC can not be used to compare

DIR or DIR-type models as response time information is a must.
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Chapter 4

Bayesian Estimation of Monotonic

Ability Growth through Regularized

Splines

4.1 Introduction

4.1.1 Background and Motivation

Item Response Theory (IRT) models, also called latent trait (analysis) models originated

from analyzing dichotomous items (Lord (1953), Rasch (1961)). Their applications al-

low researchers to separate assessment of the latent ability of examinees (e.g., attitude,

proficiency, preferences and other mental/behavior properties) from effectiveness of the

test items. Please see section 1.1 to know more on IRT models and its origination. The

large and complex data, collected from computer-based measurement testing instead

of traditional paper based testing, usually have three major features, i.e., longitudinal

observations, local dependent responses and randomized items. These make the classic
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IRT models face great challenges. Please see into section 1.2.2 to know more in details

about current models that address the issues. In this Chapter we are particularly inter-

ested in various growth models that were considered for ability growth process. For a

literature on parametric models for ability growth, that have been implemented, please

review section 1.3.2. As far as growth models were concerned, Andersen (1985), Em-

bretson (1991) and Davier, Xu, and Carstensen (2011) treated longitudinal ability as

multivariate ability vector having common multivariate distribution structure. Ability

thereby loses its time-series interpretation. Later structural equations modeling (SEM)

has become a popular tool to analyze linear or polynomial function of time (Hsieh et al.

(2013)) with random coefficients. They are also popularly known as latent growth curve

(LGC) models. Bollen and Curran (2004) made a comparative study and showed that

an autoregressive latent model (ALT) performs better than latent models or AR meth-

ods. This motivated Wang et al. (2013) to combine the two ideas to propose a Markov

process with time dependent co-variates . In summary, all these models are yet based

on some parametric assumption; hence they may be restrictive. Although there have

been prior works on non-parametric item response function (IRF), that connect ability

and probability of correct response, and, there have been research works that take a

functional data viewpoint on probability function bypassing the interpretation of latent

ability, there have been hardly any known work to the best of my knowledge on the non-

parametric smooth ability growth curves. All these models fail to incorporate an overall

monotonic trend directly in the modeling framework as ability is often deemed to have
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an overall monotonic growth. Also estimates from these models turn out to be zigzagged

specially in the case of tests executed at irregularly spaced time points. Yet we all can

safely assume that a person’s growth is very smooth process for most of the cases. This

necessitates innovative modeling of ability that ensures smoothness. In addition, DIR

or DIR-RT type models solely build on theoretical justification of the evolution process

of ability. There can be cases where this justification may not be exactly correct.

In this paper, we propose a novel class of DIR models with semi-parametric smooth

growth curve (DIR-SMSG) based on certain type splines so as to make latent ability

growth more flexible, thereby easy to interpret in the scenarios of multiple time test-

takers at individually-varying and irregular-spaced time points. Our proposed solution

is based on regularized splines. For the sake of being self-contained we shall give quick

overview of splines and some of its interesting properties.

4.1.2 B-spline Functions

Definition

A spline function of order p, f(t), can be defined as piece-wise polynomial where pieces

are based on knots. Since our eventual goal is to work with a spline over a finite interval

, say [a, b], a, b ∈ R, Let us introduce some notations based on this interval. Let the

knots be given by a = ζ0 < ζ1 < · · · < ζK < ζK+1 = b so that there are K many

distinct internal knots. The knot sequence is augmented by adding (p− 1) replicates of
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the end-points on both sides. As a result, full sequence, η1, η2, · · · , ηK+2p can be given

in the following way

η1 = η2 = · · · = ηp = ζ0 = a, (4.1)

ηp+1 = ζ1, ηp+2 = ζ2, · · · , ηp+k = ζk,

ηk+p+1 = ηk+p+2 = · · · = ηk+2p = ζk+1 = b.

The spline function, f(t), is a polynomial of order p on every interval (ηj, ηj+1) and has

(p− 2) continuous derivatives on the interval (a, b). The set of spline functions of order

p for a fixed sequence of knots, η = η1, · · · , ηK+2p, forms a vector space of functions. A

very interesting basis for that is what are known as Basis splines or simply B-splines of

size (K+ p) ( See De Boor (2001), Curry and Schoenberg (1988) ). They can be defined

recursively as follows,

Bj,1(t) =


1 if ηj ≤ t < ηj+1

0 otherwise

(4.2)

Bj,l(t) =
t− ηj

ηj+l−1 − ηj
Bj,l−1(t) +

ηj+l − t
ηj+l − ηj+1

Bj+1,l−1(t),

where l = 2, · · · , p and j = 1, · · · , K + 2p− l. If we adopt the convention that Bj,1(t) =

0 ∀ t, t ∈ R if ηj = ηj+1, then by induction Bj,l(t) = 0 if ηj = ηj+1 =. Hence, B1,l(t) =
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0 ∀ t ∈ R and l < p on the defined knot sequence. f(t) can be expressed as

f(t) =

K+p∑
j=1

βjBj,p ,

where βj ’s are usually called control points.

Some Properties of B-splines

Now suppose one would like to estimate smooth curve by spline of certain order and with

fixed knot-sequence. If one has enough data points to estimate that smooth curve then

spline estimate would be nothing but the curve with control points obtained through

least square. Here we note that if we increase the knot sequence and/or degree we

can have larger basis to capture more complex patterns but with the increase in the

number of B-splines estimates may not be smooth enough due to variance-bias trade-off.

To impose smoothness on spline estimates either one has to restrict the number of B-

splines or one needs to introduce regularization in some way. One interesting property

of spline is that its derivative is also a spline with lower order. Since smoothness is often

measured through derivatives, this property particularly has very special significance.

Prochazkova (2005) showed that

f ′(t) =

k+p∑
j=1

βj[
p− 1

ηj+p−1 − ηj
Bj,p−1 −

p− 1

ηj+p − ηj+1

Bj+1,p−1] (4.3)

=

k+p−1∑
j=1

p− 1

ηj+p − ηj+1

(βj+1 − βj)Bj+1,p−1.
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First we note that from (4.3) increasing splines can be obtained by ensuring ∆βj to

be positive to make sure overall derivative function is positive at all t. This property

will be made use of in the next section to impose monotonicity restriction. Also it

immediately follows that lth derivative of f(t) would depend on values of ∆lβj, l
th order

difference of βj’s. This tells us one can increase smoothness of splines by shrinking these

higher order differences of βj’s

P-spines or Penalized Splines

P-splines or penalized splines are nothing but regularized splines. The objective is to find

a smooth spline estimate of a given mean function that may appear withing modeling

framework. As shown in section 4.1.2, Eilers and Marx (1996) applied this idea to

penalize higher orders to get regualarized estimates of βj’s. So in frequentists’ sense it

was maximization of the following :

l(β, τ, ψ|data)− λ
∑
k≥2

(∆kβj)
2. (4.4)

Eilers and Marx (1996) only chose to penalize 2nd order difference for the sake of sim-

plicity. Later Brezger and Lang (2006) generalized this idea to Bayesian framework.

Our smooth estimates of ability are motivated by Brezger and Lang (2006) ’s idea.
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4.1.3 Preview

In section 2, we will put forward a new class of dynamic item response models with semi-

parametric and smooth ability growth (DIR-SMSG). Due to complexity of the model

considered, Bayesian methods and Markov Chain Monte Carlo (MCMC) computational

techniques will be employed and section 3 will present the statistical inference proce-

dures. Section 4 validates Bayesian inference procedure proposed with some simulations

and this section will study the robustness of the model while fitted in the simulated

data, that originated from DIR models. We also explore the possibility of applying it to

MetaMetrics data. In section 6, we conclude by stressing the robust recovery of the pa-

rameter estimates of response models as well as smooth monotonic estimation of ability

growth.

4.2 Dynamic Item Response with Semi-parametric

Smooth Growth (DIR-SMSG)

Motivated by DIR models as introduced by Wang et al. (2013) we propose a two-stage

model. In the first stage response is modeled through one parameter logistic model as in

DIR models with latent ability level. This can be extended to 2 parameter logistic (2-PL)

or 3 parameter logistic (3-PL) if required. In the 2nd stage the dynamic latent growth

is captured via semi-parametric methods using splines. Later the monotonicity and
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smoothness property is ensured with appropriate choices of priors for spline parameters.

4.2.1 First Stage: The Observation Equations in DIR-SMSG

Models

To express the models, we shall borrow similar notations as introduced in section 2.2.1.

Let Xi,t,s,l be the item response to indicate the correctness of the answer of the l-th item

in the s-th test on the t-th day given by the i-th person, where i = 1, · · · , n (number

of subjects); t = 1, · · · , Ti (number of test dates); s = 1, · · · , Si,t (number of tests in a

day); and l = 1, · · · , Ki,t,s (number of items in a test). Likewise, denote the difficulty of

the l-th item as di,t,s,l. Here we shall need to make a clarification of the notation. Let t

be a point on a time scale used for all individuals. It should be clear that if ith individual

takes exams on Ti many test-dates. In general, tests taken on hth day since beginning

may not be the same for every individual as exact time point, th is nested within ith

individual. For the sake simplicity we shall often use Xi,t,s,l to mean Xi,ti,sti ,lsti

The Observation Equations of Item Responses

Observation equation remains the same as in DIR models. We shall briefly re-visit

section 2.2.1. Let us recall in a design of computerized tests, item difficulty, i.e., di,t,s,l,

is a randomized parameter, assuming to be randomly drawn from a bank of items with

certain ensemble mean. di,t,s,l then can be modeled as a measurement error model, where

di,t,s,l = ai,t,s+εi,t,s,l with ai,t,s being an ensemble mean difficulty of items in the s-th test,
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and εi,t,s,l ∼ N (0, σ2) with σ2 known according to the test design and N (·, ·) denoting a

normal distribution. Similar as Wang et al. (2013) did, we modify classic IRT models to

accommodate the complication by modeling the observation equation of item responses

as

Pr(Xi,t,s,l = 1 | θi,t, ϕi,t, ηi,t,s, ai,t,s) = F(θi,t − ai,t,s + ϕi,t + ηi,t,s + εi,t,s,l), (4.5)

where θi,t represents the i-th person’s ability on the day t with assuming one’s ability is

constant over a given day, ϕi,t and ηi,t,s take account of daily and test random effects,

respectively, to explain the possible local dependence of item responses. Assume ϕi,t ∼

N (0, δ−1
i ) with its precision unknown and being different for each person. Similarly, let

ηi,t ∼ NSi,t
(0, τ−1

i I |
∑Si,t

s=1 ηi,t,s = 0) with ηi,t = (ηi,t,1, . . . , ηi,t,Si,t
)′ being the vector of

test random effects on the day t for the individual i and I is an Si,t×Si,t identity matrix.

Utilizing precision parameters in place of variance parameters for normal distributions

is because of the convenience in Bayesian computation. The reason of letting ηi,t be a

singular multivariate normal (by setting the sum of test random effects to be zero on any

day t) is to remove any possibility of unidentifiable issues between daily and test random

effects. In the application to MetaMetrics testbed, choose F (·) to be a logistic link due

to the convention in MetaMetrics, where they used logit unit as a linear transformation

of Lexile scale used in their products.
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4.2.2 Second Stage: System Equations in DIR-SMSG

In this stage we deviate from DIR models significantly. Instead of choosing to model

as a parametric Markov chain we choose to treat the ability as an unknown monotonic

and smooth function of time. Usually it is assumed that the true inherent mean ability

growth is monotonic and smooth, thus allowing some variability for realized ability

process. The reason of introducing this variability is simply the fact though students’

ability usually shows a monotonic growth there are patches of time, when people may

not always realize their full potential or they are super-prepared for the tests. Thus θi,t

can be given by the following

θi,t = Fi(t) + wi,t, wi,t ∼ N (0,∆i,t/φ) ∀ t ≥ 2, (4.6)

Fi(t) ↑ t.

The first term Fi(t) is assumed to be unknown but fixed function of time where as

wi,t,∼ N (0, φ−1∆i,t), represents the random component of the change in the i-th person’s

ability on the t-th day with φ being a common known parameter. In reality φ may or

may not be known. For the sake simplicity we assumed φ to be known. This assumption

of wi,t presumes that one’s ability is much more uncertain, if he/she is absent for a longer

period.

In general Fi(t) can be very hard to estimate along with monotonicity and smoothness

restriction and may require lots of data points. To circumvent this hurdle we further
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assume that Fi(t) can be approximated by a spline function (De Boor (2001)) of order

4 with equi-distant knot sequence as follows

Fi(t) =
m∑
j=1

αi,jBj(ti), α′i,js ↑ w.r.t j, (4.7)

where m represents size of B-spline basis and αi,j’s are control points. m=p+K, where p

denotes the order of the spline (such as 3 for quadratic, 4 for cubic splines) and K denotes

the total number of equi-spaced internal knots over whole time span of growth ( please

review section 4.1.2 for more details). Choosing equi-spaced knots helps computations

and does not pose any problem as long as there are enough data points to estimate the

control points. In both simulated data and real-data sets we will be working with cubic

splines and 20(m) many b-splines. αi,j ’s are the control points for i-th individual and

they increase with j. This property ensures monotonicity of spline function.

4.2.3 A Summary of DIR-SMSG Models

To summarize, the proposed one-parameter DIR-SMSG models have two-stages, the 1st

stage consists of observation equations, while the 2nd stage consists of system equations,

1st stage: Pr(Xi,t,s,l = 1 | θi,t, ϕi,t, ηi,t,s, ai,t,s, εi,t,s,l)

=
exp(θi,t − ai,t,s + ϕi,t + ηi,t,s + εi,t,s,l)

1 + exp(θi,t − ai,t,s + ϕi,t + ηi,t,s + εi,t,s,l)
,

2nd stage: θi,t =
m∑
j=1

αi,jBj(ti) + wi,t, α′i,js ↑ w.r.t j,
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where Xi,t,s,l is observed; ai,t,s’s and ∆i,t’s are known and εi,t,s,l ∼ N (0, σ2) with known

σ2. Moreover, we have the following distribution assumptions. ϕi,t ∼ N (0, δ−1
i ), ηi,t ∼

NSi,t
(0, τ−1

i I |
∑Si,t

s=1 ηi,t,s = 0), wi,t ∼ N (0, φ−1∆i,t), φ is also assumed to be known.

4.3 Statistical Inference and Bayesian Methodology

As discussed in the section 1.5 we note that a frequentist’s approach implementing

Expectation Maximization (EM) or some version of that or marginalized maximized

likelihood estimators ( MML) is almost next to impossible to compute due to extremely

complex nature of likelihood. In addition, some parameter spaces (α′i,js) are restricted,

which renders the EM or MML method extremely intractable. On top of that standard

error estimates of the estimators are not very reliable. On the other hand Bayesian

methodology not only simplifies modeling and estimating the uncertainties, thanks to

advancements in MCMC techniques, Bayesian computation is way simpler and easy to

be extendable to other complex variants of the model. Next we describe and implement

a fully Bayesian methodology.

4.3.1 Prior Distribution for the Unknown Parameters

For the prior choices of scale parameters δi’s, τi’s and φ, we use the same choices

of Wang et al. (2013), which assign them objective priors, π(φ) ∝ 1/φ3/2, π(δi) ∝

1/δ
3/2
i , and π(τi) ∝ 1/τ

3/2
i for all i.
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In this study we plan to use 20 B-splines of order 4 (cubic splines) that might lead

to over-fitting. As a result finally estimated spline curve may not be smooth. To avoid

that, we would like to use the idea of implementing 2nd order smoothness penalty as

proposed originally by Eilers and Marx (1996). In our case, following the idea of Brezger

and Steiner (2008), we will be replacing the frequentist’s notion of 2nd degree difference

penalization by its stochastic analogue of 2nd order random walk as prior for spline

coefficients (i.e. αi,j’s) in Bayesian framework.

αi,j = 2αi,j−1 − αi,j−2 + ui,j, ui,j ∼ N (0, ω−1
i ), π(αi,1), π(αi,2) ∝ 1 (4.8)

or D2αi ∼ N(0, ω−1
i Im−2).

In the above equation ,the operator D2 is the following matrix,



1 −2 1 0 . . . . . . 0

0 1 −2 1 . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . . . . 1 −2 1


.

In this formulation ωi’s are hyper parameters that control the degree of smoothness

of individual specific mean ability growth curve. For example higher values of ωi’s

would ensure smoother αi,j’s values, which in turn ensures smoother spline estimates.
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Incorporating monotonicity restriction via prior for αi,j can be given as follows:

p(αi|ωi) ∝ exp(−ωiαi′D2′D2αi/2)
∏
j≥2

1αi,j≥αi,j−1
, (4.9)

or exp(−ωiαi′Kδαi/2)
∏
j≥2

1αi,j≥αi,j−1
.

The prior for ωi is assumed diffused Gamma, a weakly informative prior.

4.3.2 Posterior Distribution and Data Augmentation Scheme

Using the fact that a standard logistic distribution can be expressed as a scale mix-

ture of normals and applying the data augmentation idea as employed in section 2.3.2

(Tanner and Wong (1987)), a latent variable Yi,t,s,l can be introduced for each re-

sponse variable Xi,t,s,l, where Yi,t,s,l ∼ N (θi,t − ai,t,s + ϕi,t + ηi,t,s + εi,t,s,l, 4ν
2
i,t,s,l) and

Pr(Xi,t,s,l = 1|θi,t, ai,t,s, ϕi,t, ηi,t,s, εi,t,s,l) = P(Yi,t,s,l > 0|θi,t, ai,t,s, ϕi,t, ηi,t,s, εi,t,s,l). Let

us define Xi,t,s,l = 1 if Yi,t,s,l > 0 and Xi,t,s,l = 0 otherwise, and the introduction of

Yi,t,s,l can facilitate the MCMC computation although it introduces more unknowns.

Since εi,t,s,l
i.i.d.∼ N (0, σ2), marginalizing out it, results in Yi,t,s,l ∼ N (θi,t − ai,t,s + ϕi,t +

ηi,t,s, 4ν
2
i,t,s,l + σ2).
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Then, the one-parameter DIR-SMSG can be rewritten as

θi,t =
m∑
j=1

αi,jBj(ti) + wi,t,

Yi,t,s,l = θi,t − ai,t,s + ϕi,t + ηi,t,s + ξi,t,s,l, (4.10)

Xi,t,s,l = I(Yi,t,s,l > 0),

where ξi,t,s,l ∼ N (0, ψ−1
i,t,s,l) with ψ−1

i,t,s,l = 4γ2
i,t,s,l + σ2 and γi,t,s,l ∼ K-S distribution,

wi,t ∼ N (0, φ−1∆i,t), ϕi,t ∼ N (0, δ−1
i ), ηi,t ∼ NSi,t

(0, τ−1
i I |

∑Si,t

s=1 ηi,t,s = 0). If we treat

φ known in the above expression, one can marginalize θ out to simplify the models,

which will in turn help simplify MCMC computation steps in two ways. First dropping

θ would reduce the number conditionals to loop through and secondly convergence would

be faster due to collapsing. The equations in 4.10 can be re-written as follows,

Yi,t,s,l =
m∑
j=1

αi,jBj(ti)− ai,t,s + ϕi,t + ηi,t,s + ξ∗i,t,s,l, (4.11)

Xi,t,s,l = I(Yi,t,s,l > 0),

where ξ∗i,t,s,l ∼ N (0, ψ−1
i,t,s,l+∆i,t/φ) with ψ−1

i,t,s,l = 4γ2
i,t,s,l+σ

2 and γi,t,s,l ∼ K-S distribution,

wi,t ∼ N (0, φ−1∆i,t), ϕi,t ∼ N (0, δ−1
i ), ηi,t ∼ NSi,t

(0, τ−1
i I |

∑Si,t

s=1 ηi,t,s = 0).

Define θ = (θ1, · · · ,θn)′ with θi = (θi,0, θi,1, · · · , θi,Ti)′; α = (α1, · · · ,αn)′ with

αi = (αi,1, αi,2, · · · , αi,m)′; τ = (τ1, · · · , τn)′, δ = (δ1, · · · , δn)′,ω = (ω1, · · · , ωn)′ ;

Y = {Yi,t,s,l},γ = {γi,t,s,l} and X = {Xi,t,s,l}; ϕ = {ϕi,t}, η = {ηi,t,s} and η∗i,t =
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(ηi,t,1, · · · , ηi,t,Si,t−1)′; where l = 1, · · · , Ki,t,s, s = 1, · · · , Si,t, t = 1, · · · , Ti and i =

1, · · · , n. Let us also introduce here Ti × m dimensional matrices, Xi, defined as

(( Xi(ti, j) = Bj(ti) )). Please note that Xi is not boldfaced to be distinguished

from data X. Let bold symbols denote the vector on the omitted subscripts.(e.g.

αi = (αi,1, · · · , αi,m)t).Given the data X, the joint posterior density of (Y,θ, φ, δ, τ ,α)

of our proposed DIR-SMSG models is

π(Y,θ, φ, δ, τ ,α,ω,γ | X)

∝ {p(φ)
n∏
i=1

p(τi)p(δi)p(αi|ωi)p(ωi|a, b)}{
n∏
i=1

Ti∏
h=1

Si,t∏
s=1

Ki,t,s∏
l=1

p(γi,t,s,l)}

× {
n∏
i=1

Ti∏
h=1

Si,t∏
s=1

Ki,t,s∏
l=1

[I(Yi,t,s,l > 0)I(Xi,t,s,l = 1) + I(Yi,t,s,l <= 0)I(Xi,t,s,l = 0)]

√
ψi,t,s,l

2π
exp(−ψi,t,s,l

2
(Yi,t,s,l − θi,t + ai,t,s − ϕi,t − ηi,t,s)2)× I(ηi,t,Si,t

= −
Si,t−1∑
s=1

ηi,t,s)}

× {
n∏
i=1

Ti∏
h=1

τ
Si,t−1

2
i exp(

−τiη∗
′
i,tΣ

−1
i,t η

∗′
i,t

2
)} × {

n∏
i=1

Ti∏
h=1

δ
1
2
i exp(

−δiϕ2
i,t

2
)}

× {(
n∏
i=1

Ti∏
h=1

φ1/2 exp(−φ(θi,t −Xi(t, :)αi)
′(θi,t −Xi(t, :)αi)

2∆i,t

)}.

The proof of posterior propriety of DIR-SMSG models closely follows from a simple

extension of Appendix C in Wang et al. (2013) for DIR models. The expression given

above works for a general case when φ is not known. If φ is known the expression would

remain the same except for few changes like p(φ) is omitted and θ needs to be re-defined

as in Appendix C. Please see Appendix C for the expression for posterior density when
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φ is known.

4.3.3 MCMC Computation of DIR-SMSG Models

The computation is carried out by MCMC scheme that samples from the posterior via

block Gibbs sampling schemes. The difficulty of the sampling scheme is to draw the

spline control points, αi,j’s. It turns out that the full conditional distribution of αi is a

truncated multivariate normal distribution. One can get a block sample by running short

MCMC chain (usually becomes stable after 100 iterations) from this full conditional (by

Robert (1995)’s approach )or one can consider one run from each univariate truncated

normal and integrate that into overall Gibbs sampler. We adopted the first approach

in which every time we need to draw a sample from full conditionals of α we ran a

sub-chain of length 100 before moving to the next draw from other full conditionals of

the gibbs sampler. The details of MCMC steps are given in Appendix C. The Gibbs

sampling starts at Step 1 in Appendix C, with initial values for θ(0), φ(0), ϕ(0), η(0), δ(0),

τ (0), ω(0) ,γ(0) and α(0) then loops through Step 10 in Appendix C, until the MCMC

converges. The initial values chosen in the applications were θ(0) = ~0, φ(0) = 1, ϕ(0) = ~0,

η(0) = ~0, δ(0) = ~1, τ (0) = ~1, γ(0) = ~1, ω(0) = 0.5~1. Here we note that the initial value

of α(0) can not be assigned constant vector because of monotonicity restriction. Let’s

define a monotonic sequence as follows

α(0)[i, j] = 0.5 + (0.002(i− 1)) + (0.05i)(j − 1),∀ i, j; i = 1 · · ·n; j = 1 · · ·m.
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The method described here is for the general case when φ may not be known. In our

case φ is known. (φ may be known from prior studies or can be roughly elicited from the

raw estimates). Known φ would simplify and accelerate the MCMC steps. The modified

steps are also given in Appendix C. The convergence was evaluated informally by looking

at trace plots of all the parameters and ability curves. Then, statistical inferences are

made straightforward from the MCMC samples. For example, an estimate and 95%

credible interval (CI) for the latent trajectory of one’s ability θi,t can be plot from the

median, 2.5%, and 97.5% empirical quantiles of the corresponding MCMC realizations.

In these examples, ability will again be graphed as a function of time,t, so that the

dynamic changes of an examinee is apparent.

4.4 Simulation Study

To validate the inference procedure and compare the benefits of a semi-parametric set-

up , a simulation study was conducted with similar set-up as that of DIR models as laid

out in section 4 of Wang et al. (2013). To save the space, we only illustrate the situation

when data generating process follows an monotonically increasing mean ability process.

The simulation method considers multiple individuals taking a series of tests scheduled

at individually-varying and irregularly-spaced time points.
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4.4.1 DIR-SMSG Models Simulation

Following the simulation study of DIR models in Wang et al. (2013), assume there are 10

individuals, each of them has taken four tests on 50 different test dates, where each test

contains 10 items. The specification means Ki,t,s = 10, for s = 1, · · · , Si,t, t = 1, · · · , Ti,

i = 1, · · · , n with Si,t = 4, Ti = 50 and n = 10. Let time lapse between two consecutive

test dates be ∆it,= t + 10 if t ≤ Ti/2 or ∆i,t = t − 10 otherwise, creating a irregularly

spaced gap between two test dates.

In order to do the comparison of DIR-SMSG models later with DIR models, we

assign same values of the common parameters, φ, δi, τi, as used in Wang et al. (2013),

where φ = 1/0.02182, leading standard deviation of wi,t in the system equation (2.5) is

0.0218
√

∆i,t and the values of δi, τi are specified in Table 4.7.

i 1 2 3 4 5 6 7 8 9 10
δ 2.0408 1.3333 1.8182 1.2346 1.5873 1 2.2222 1.0526 1.1494 2
τ 4 3.1250 4.3478 2.7027 3.7037 2.8571 4 2.2222 9.0909 4.5455

Table 4.7: Values of common parameters with DIR models, used in the simulation

Here ωi is assumed to be 1 for all i = 1 · · ·n. Last we need to specify some values that

conform prior belief about αi,j’s. In order to accomplish that, we simulate a set of values

from prior process. We choose α1,i and α2,i quite arbitrarily such that α1,i < α2,i. Next

we simulate α3,i · · ·αm,i such that (α3,i, α4,i, · · · , αm,i|α1,i, α2,i)
′ ∼ NT (D?−1Ci,Pi) where

Ci = (2α2,i − α1,i,−α2,i, 0, · · · , 0)′ and Pi = ωiD
?′D?, D? = D2[:, 3 : m] and truncation

is based on the boundary condition α2,i < α3,i < · · · < αm,i. We employ MCMC to
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simulate α′is using Robert (1995)’s approach. Steps for α from step 3, Appendix C can

be mimicked by making the following updates:

Set αmi = D?−1Ci,α(0)
i = α

(s)
i

Pi = Pi,

where α
(s)
i is the vector of starting points from the domain region. α

(s)
i is chosen as α

(0)
i

(see 4.3.3). We would like to point out that D?−1 has a very special structure as given

below, 

1 0 · · · 0

2 1 · · · 0

...
...

...

n n− 1 · · · 1


.

Simulation proceeds by simulating random effects or latent variables using the as-

signed parameter values above for DIR-SMSG models. Once we get the simulated values

for θi,t using 2nd stage model, then the test difficulties, ai,t,s in 1st stage model is set to

be θi,t + ζ∗, where ζ∗ is a random variable with uniform distribution on (−0.1, 0.1). The

values of εi,t,s,l are drawn from N (0, σ2) with σ = 0.7333 . Notice the values of σ and φ

are also used later for fitting simulated data as generated for DIR models in Wang et al.

(2013). The dichotomous data of item responses is now treated as our observations, and

the Bayesian methodology from section 4.3.3 is implemented in estimating the model
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Figure 4.9: True mean ability growth curves, smooth and monotonic, based on semi-
parametric model

parameters of DIR-SMSG models.

Similar to cases of DIR-RT models, the parameters are estimated through posterior

median calculated from their corresponding MCMC samples. Each MCMC chain was

run for 50,000 iterations with a 25,000 burn-in period. Figure 4.10 (a)-(b) give posterior

median estimates (red squares) along with 95% CIs (red bars) of τ−1/2, δ−1/2 respectively

and illustrate their true values (black dot). Clearly from Figure 4.10, the true values of

those parameters are contained within their corresponding 95% CIs.

For the posterior median estimates of other parameters, we obtained very similar

results as obtained in DIR simulation study. Median a posteriori eastimates are very
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Figure 4.10: Posterior summary of τ
−1/2
i , δ

−1/2
i ’s, where red circles represent true values,

red squares are the posterior median estimates and red bars indicate 95% CIs.

close to true values and the true parameters values always have high 95% coverage prob-

ability (CP). We bring our attention to our primary interest, estimating latent ability

trajectories. Figure 4.11 (a)-(d) illustrate four types of growth curves in our simulation,

where (a) θ2 represents an individual with steady increasing growth; (b) θ6 indicates an

increasing growth but it has a point of inflexion somewhere in the middle of time-line

such that the growth gradually changes from slowly increasing to fast increasing. (c)

θ7 presents us with another monotonically increasing pattern with possibly two points

of inflexion; (d) θ8 displays very steady monotonic growth except for end points where

growth is steeper. In Figure 4.11, the true ability curves (black dots) have been plotted
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along with our posterior median estimates of ability (blue circles) and their correspond-

ing 95% credible band (blue lines). Notice in each sub-figure, very small proportion of

true values are outside of 95% credible bands. Note that the estimates of αi,j ’s are not

checked directly. Rather the constructed 95% credible band for monotonic mean ability

growth process is indirect validation as it is equivalent to looking at MCMC estimates

of Xi(t, :)αi.
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(a) 2nd individual
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(b) 6th individual
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(c) 7th individual
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Figure 4.11: The latent trajectory of one’s ability growth, where black dots, middle
dashed-line and connected lines represent true ability, the posterior median estimates
and the 95% credible bands, respectively.
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4.5 Robustness of DIR-SMSG

We intend to investigate the robustness of semi-parametric DIR-SMSG. In order to

achieve this goal, DIR-SMSG models are fitted to the data, that was originally simulated

from DIR-RT models. Trajectories of mean ability were plotted for both DIR models

and DIR-SMSG models along with their corresponding credible bands. Figure 4.12

displays the growth curve of two selected individuals (i.e., θ1 and θ2), where the statistical

inference is based on the simulated example in 2.4. For other individuals, results are

similar and to save the space, we omit the plots for others. In Figure 4.12 (a) and (b),

95% CIs of DIR models (connected lines) encompass 95% CIs of DIR-SMSG models

(dashed line); both 95% CIs contain the true values (black dots). The average length

of 95% credible band of ability estimates for DIR-SMSG models is slightly shorter than

that of DIR models. In addition, notice that in Figure 4.12,(a) both estimates (posterior

median) of the graphs of DIR (circles) as well as of DIR-SMSG (dashed middle line)

adhere to true ability (black dots) but in higher end points of time DIR performs poorly

whereas thanks to the monotonic development DIR-SMSG tried to capture it better.

The results illustrate that by incorporating information on properties like monotonicity

and smoothness, we can reduce the bias of the estimates of one’s ability trajectory

on top of improving the precision if the true curve indeed satisfies those properties.

In summary, posterior median growth curve of DIR-SMSG seems to be approximating

the mean growth well and lies well within 95% credible interval of mean ability of the
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posterior estimates of the DIR models. It also estimates precision parameters of response

model quite well. Overall the fit is quite robust.
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Figure 4.12: The comparison of ability estimates between DIR-SMSG and DIR models,
where black dots, blue circles, middle red-dashed line represent true mean ability, DIR
ability and DIR-SMSG ability estimates respectively; connected-lines (blue) and dash
(red) lines represent 95% credible bands for DIR and for DIR-SMSG respectively.

4.6 Discussion

Although there have been prior works on non-parametric item response function, that

connects ability and probability of correct response, and, there have been research works

that take a functional data viewpoint on probability function bypassing the interpreta-

tion of latent ability, there have been hardly any known work to the best of our knowl-

edge on the non-parametric smooth ability growth curves in the context of longitudinal

IRT. The smoothness is assured by using penalized splines in Bayesian context, thereby
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introducing regularization in ability curve estimation. There is no currently existing

methodology that, in addition to addressing these properties of a general longitudinal

testing data, generalizes the ability curve to monotone penalized splines. Our proposed

Bayesian hierarchical modeling approach provides this desired unified framework that

has the potential to introduce flexible interpretable models. Simulation study showed a

very interesting insight that in presence of some extra information like smoothness and

monotonicity, the precision and bias can be improved upon. Also it is quite robust and

does not require any explicit assumption on the evolution of ability process other than

curvature properties like smoothness and/or monotonicity etc. Such a framework is also

readily applicable to any dichotomous psychometric tests.One of the added advantages

that this semi-parametric model has over DIR or DIR-RT models is that one can get

an estimate of mean ability at any given point of time within the growth period. This

capability of interpolating ability is not straight-forward in DIR or DIR-RT models.
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Chapter 5

Conclusions and Future Works

5.1 Conclusions

In this Chapter we summarize the results and discuss future steps. In Chapter 2 we

found out that incorporation of response time into the item response model for the

analysis of individual varying and irregular spaced longitudinal observations has sig-

nificantly improved precision and reduced bias for the ability estimation. Analyzing

MetaMetric datasets with the help of DIR-RT models further supports findings of Wang

et al. (2013). For example, the evidence of violation of local dependence assumption is

generally strong in DIR-RT models, and use of test and daily random effects to model

the local dependence seems to be necessary and successful; and the retrospective analysis

of ability estimation is of considerable use in understanding population behavior, such

as frequently observed drops in ability after a long pause in testing. DIR-RT models

improve precision of other parameters of response model. The result favors the inverted

U-shape linkage, which is quite important and meaningful conclusion, since it supports

that for times series of testing data, the psychology of students in a test seems to be to

spend more time on tests that match their ability levels and spend less time on those,
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that are either too easy or too hard.

In Chapter 3 we proposed partial likelihood based DIC (DICp) that performs well

in simulated data. When the same is applied to test which linkage is the best choice

in MetaMetric testing data it re-confirmed the I-U shaped linkage, that was already

proposed based on some empirical evidence in Chapter 2. In Chapter 3, semi-parametric

ability growth was introduced and posterior estimation is shown to capture efficient

parameter recovery. It is then shown to be quite robust as it approximates simulated

data from DIR models quite well. The advantage of this estimation process is that (1)

smooth and (2) monotonicity can be preserved explicitly while modeling. It also improves

precision compared to DIR fits thanks to the smoothness penalty as long as ability shows

monotonic growth on an average. Interpolating the ability at a given time point is very

straight-forward. Finally we focused on clustering of longitudinal data, mostly with

a view to cluster ability estimates based of rate of change. We proposed and applied

a derivative spline based approach which captures the true clusters reasonably well in

simulated set-up with some level of noise. This methodology can be readily applied to

simulated data from DIR or DIR-RT models and also the MetaMetric test-data. . An

alternative to this method is model-based clustering, which can be implemented through

modeling ci’s by a mixture distribution etc in future works. Both the implementations

are discussed in 3rd section of this Chapter.
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5.2 Some Immediate Extensions

In Chapter 2, no sensitivity analysis of DICp is studied for mis-specified ability process.

So there is some future works possible, that may add to credibility of the measure. Semi-

parametric smooth growth models can be applied to MetaMetrics test data judiciously

after a careful treatment of outliers as the growth may not be always monotonic for all

students (This fact was immediate from Wang et al. (2013)’s study). This model also

lacks the response time component and can be extended to DIR-RT type of framework

and precision may be improved. Also it treats the precision parameter, φ known, which

can be relaxed in future studies. The MCMC steps are also laid down in the Appendix

C in case of precision parameter, φ, being unknown. All these models can be extended

to 2-PL or 3-PL and normal ogive models.

5.3 Work in Progress: Clustering Ability Growth

based on Rate of Learning

5.3.1 Background and Motivation

Longitudinal study in item response theory is still in its nascent stage, especially in

the context of test-takers, who repeatedly come back for taking tests at irregularly

spaced time points. Most of the earlier studies exploited the fact that tests are executed

at equi-spaced time points, that are fixed for all test takers, for modeling IRT and
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concurrently developing other important measures. In addition, clustering these ability

growth trajectories is hardly formally addressed to the best of our knowledge in the

context of IRT. Clustering such trajectories can have some important implications. For

example, one might want to group students whose learning patterns are similar. Such

cluster may not be very appealing as students studying in different grades shall have

different ability intercepts at any given time point to begin with. As a result, there

would be many groups and hence clustering may not serve any general interest. In

contrast, one might be interested to cluster the growth of latent trait, such as ability,

based on rate of learning. In other words, instead of clustering growth curves we would

try to cluster its derivative function. This helps better distinguish the fast learners from

slow learner and from average learners in general. Also one can think of further sub-

groups to explore into (such as super-smart or extra ordinary, more than average etc).

This feature makes the students from different grades comparable as a smart student

in grade 2 and another one in grade 8 will have different ability growth curves but may

have similar learning rate curve. Finally the reason why such a classification matters is

that each group may require different approach when it comes to imparting education to

them. Clearly while fast learner can smoothly go over a piece of content while other two

groups may be struggling to do the same content and may require more personalized

treatments. So it is evident that clustering of ability growth curves based on learning

rates can provide us with very useful insights.

As mentioned before learning rate is equivalent to looking at derivative function of the
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growth curve but derivative may not exist always. That presents us the first challenge.

Such a clustering is usually called shape-based clustering, which is dealt within the very

general purview of functional clustering. In this Chapter we would propose methods

suited for the purpose, that are tested to perform well on simulated data while addressing

the usual challenges, that any clustering technique faces, for example number of clusters

possible, label switching etc.

5.3.2 Clustering Methods

Clustering approaches are broadly of two types, a) distance based and b) model based.

First type of clustering, as the name suggests, does not assume any specific model on

data generation process and usually divides the data into few distinct groups by defin-

ing dissimilarity matrix or distance function. This is what is called hard clustering as

every object belongs to exactly one group. On the other hand, model based clustering

techniques usually assume the data to be coming from a finite mixture model. It usually

computes the conditional probability of group membership and estimates of the param-

eters for the data generation process. Both of these approaches are widely used and the

pros and cons of the approaches have been investigated in depth [Everitt (1981)]. It has

also been pointed out that most of the clustering methods are suitable for use on data

vectors with exchangeable, independent elements and may not be immediately applica-

ble to longitudinal data or function data where components are repeated measurements

or may share some common features [Everitt, Landau, Leese, and Stahl (2011)]. Since
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here our end goal is to group students in terms of learning rate, we propose first an

easy-to-implement distance-based approach and then propose a model-based approach.

5.3.3 Preview

In section 4, we elaborate and discuss various distance-based clustering methods and

their limitations. Section 5 deals with common extensions of this methods to functional

data or longitudinal data and role of shape and intercept in successful implementations.

In section 6, we suggest spline derivative based method and discuss its advantages in IRT

contexts. Section 7 discusses implementation of suggested approach in some simulated

data and how the implementation differs from similar approaches in the literature. The

same section eventually studies its performance as a clustering method. In section 8, a

model-based alternative is suggested. Section 9 concludes with a discussion.

5.4 Distance-based Clustering Methods

Any clustering method of this kind begins by defining a similarity or dissimilarity func-

tion or distance functions between the objects it is trying to cluster. A dissimilarity or

distance measure has the same properties as that of a metric except for that it may not

always satisfy triangle inequality. Any metric can act as a distance measure such as,

Euclidean distance or Minkowski distance etc. An example of a distance that does not
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satisfy the triangle inequality is the following distance based on correlation.

d(x, y) = 1− Corr(x, y).

Note that one of the advantages of this distance is it remains unaffected with respect

to constant scale and mean shift of the vectors. Next feature of a distance-based clus-

tering method is the algorithm it applies. There are two types of algorithms that are

prevalent, Hierarchical and Partition based. Hierarchical clustering builds a tree-like

structure, called dendogram, by recursively either splitting a group into smaller groups

or by merging smaller groups into bigger groups. Then it decides the optimal clustering

based on some properties of the tree. In the process it also defines various types of dis-

tances between the clusters (single linkage, double linkage etc). This sort of clustering

is appropriate if there is hierarchy present within data vectors. In contrast partition

based methods tend to map objects into K many disjoint clusters ( ≥ 2) by maximizing

a criterion. Two popular methods include K-means(Hartigan and Wong (1979)) and

partitioning around medoids (PAM) (Kaufman and Rousseeuw (2008)).

5.4.1 K-means and PAM

K-means is an unsupervised learning algorithm. Given a set of vectors y1, · · · , yn where

yi ∈ R for all i = 1, · · · , n K-means clustering algorithm partitions the n vectors into

K sets, say, { C1, · · · , CK } so as to minimize the sum of squared Euclidean distance to
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the assigned cluster centroids denoted as

min
K∑
k=1

∑
yi∈CK

||yi − µk||22.

here µ1, · · · , µK are the cluster centroids. To find the sets that minimize the criterion,

the algorithm chooses K starting points as cluster centroids judiciously or randomly.

The general K-means algorithm moves forward by alternating between two steps:

Assignment Step:

Assign each data point to its closest cluster. The kth set Ck = {yi ∈ Ck if ||yi − µk||22 ≤

||yi − µj||22 ∀j } such that every yi is in one and only one set.

Update step:

Calculate the centroids of newly formed sets,

µk = (
∑

i:yi∈CK

yi)/|CK |, |CK | = size of Ck.

The algorithm continues to iterate until the sets no longer change. Depending on

the initial partition, the algorithm is expected to converge to local optima; therefore,

iterating over couple multiple random starting points can lead to a global optimum. The

K-means algorithm works best when data clusters are about equal in size and shape.

The algorithm seeks to find spherical clusters since the K-means algorithm is based on

squared Euclidean distance. If the groups are not spherically distributed with many
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spurious outliers, the computed centroids may not be representative of the clusters.

PAM algorithm attempts to improve upon some of the issues that K-means faces.

The algorithm generalizes the dissimilarity matrix to user-provided any distance matrix.

It is robust to outliers since the medoid or middle vector for each group is selected from

the observed data vectors rather than based on mean calculations(centroids). To find K

sets of vectors to minimize the sum of dissimilarity of the vectors with their respective

medoids, K data points are first randomly chosen as medoids denoted as ν1, · · · , νk. The

PAM algorithm alternates between the following two steps:

Build Step

Map each data point to its closest medoid based on the user-provided dissimilarity index.

Swap Step:

For each k = 1 · · ·K, swap the medoid νk, with each non-medoid observation and

compute the sum of the dissimilarities of the vectors with their closest medoid. Find

the configuration with the smallest sum of dissimilarities. Although it takes longer than

K-means, this building and swapping procedure can return a smaller sum of dissimilarity

in contrast to what the K-means algorithm achieves.

Another challenge in these clustering methods (K-means or PAM) is that one needs to

specify the number of clusters in the beginning as opposed to Hierarchical clustering. In

practical scenarios, this tuning parameters K, the number of clusters ( 2 ≤ K < n) can

be obtained by optimizing over between group and within group dissimilarities (Milligan

and Cooper (1985)) or the average silhouette (Kaufman and Rousseeuw (2008)). Here
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we shall discuss the average silhouette as it has broad applications to various clustering

methods. For each data vector i, the silhouette s(i) is defined as follows

s(i) = (b(i)− a(i))/max{a(i), b(i)}.

where a(i) = d(i, Cji), average distance between yi and other elements of cluster Cji

[Cji is the cluster yi is assigned to]. b(i) = minl:l 6=jid(i, Cl) Define s̄ as average of all

s(i)’s. The chosen clustering algorithm is run and the overall average silhouette (s̄) is

calculated for each possible value of K. Then the optimal K is chosen to maximize the

average silhouette while minimizing the within-group dissimilarities in comparison to

the between-group dissimilarities.

5.5 Distance-based Clustering for Functional Data

5.5.1 Issues of Level and Shape

Clustering techniques that treat functional data or longitudinal data as multivariate

data may fail to cluster them based on their pattern. In a study by McCoy (2010) (

see also Heggeseth (2013)) people’s drinking habits were studied. Two types of drinkers

were chosen, heavy drinkers and beginners; for both of these, two kinds of behaviors

are possible, one is increasing drinking intake over time and other is decreasing drinking

intake over time. This can be observed in the following graph. When K-means is applied
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Figure 5.13: Graph of linear trajectories representing hypothetical alcohol consumption
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it generates two clusters corresponding to heavy drinkers and beginners respectively. In

other words, it completely ignored the overall pattern and mostly clustered based on

intercept value. This seems to be general problem (as highlighted in Heggeseth (2013))

that such clustering usually ignores the trend of the curves and tends to cluster curves

with similar intercept values. In the example above cohort of people were studied. So

the drinking pattern can be represented as vectors of same length. Euclidean distance

was considered for K-means. To particularly capture shape two types of approaches

were mostly popular that ignore the intercept effects. 1> Derivative-based approaches,

which we eventually propose in this Chapter and 2> using a distance that is invariant

to level changes (like correlation-based )

5.5.2 Derivative-based Approaches

There are many approaches as one can estimate derivative in many ways and use that

to cluster. Given data points one can compute consecutive difference quotients to use

them as derivative estimates and define distances on these estimates. But this may

lead to large variance ( D’Urso (2000)). A more popular approach is to project the

data to“good ” class of functions which are differentiable and use the derivative of the

projected functions. Tarpey (2012) used class of Fourier transforms for differentiable

class while Zerbe (1979) worked with polynomial class. Both fourier transforms and

polynomial classes are restrictive (as they are both infinitely differentiable ). A larger

class of differentiable functions is class of splines, Heggeseth (2013) extended the idea to
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splines. Our methodology is closely based on Heggeseth (2013).

5.5.3 Extension to Longitudinal Data of Various Lengths

Let us assume that we have longitudinal data points, yi,j, where i = 1, · · · , n and

j = 1, · · · , Ti. We further assume that there is an underlying function or process fi(t)

for all i = 1, · · · , n and yi,j’s are repeated measures collected from this process at certain

designated time-points. If Ti’s are the same one can apply K-means or PAM based on

Euclidean distances between the vectors. Alternatively if the functional forms are known

on can apply K-means based on L2 distance between two functions like the following.

||L2(f1, f2)|| = [

∫
T

(f1(t)− f2(t))2dt, ]1/2, T :period of measurements. (5.1)

Note Ti’s are not the same. So the first method falls apart. But if data is projected

to functional space 2nd method is still applicable. This explains why D’Urso (2000)

method is less popular although it might give unbiased estimates of derivatives.

5.6 Clustering Shapes Based on Derivatives of Spline

Estimates

Let yi,j’s be defined as in section 5.5.3. We intend to cluster underlying processes, fi(t)’s

based on their shapes. In this case we define shape by rates of changes of values and we
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outline a method very similar to Heggeseth (2013). The algorithm is given below.

1: procedure : Derivative based clustering

2: Define B-spline basis of order 3 with 2 equi-distant internal knots splines on the

measurement period. (Review 4.1.2 for splines). Let them be Bj,3(t), j = 1, · · · , 5.

3: Obtain Least Squre estimate of fi(t), ˆfi(t) =
∑

j αi,jBj,3(t) i = 1, · · · , n.

4: Obtain derivative spline coefficients (Pleas see section 4.3 for exact expression).

Lets call them α∗i,j j = 1, · · · , 4. Define α∗i = (α∗i,1, · · · , α∗i,4)′.

5: Apply K-means based on the Euclidean distance between α∗i ’s.

6: Choose the number of clusters based on silhouette method.

Note that this method of working with L2 metric between derivative spline function is

equivalent to L2 metric between some linear combinations of derivative spline coefficient.

L2(f ′1, f
′
2) =

∫
T

(f ′1(t)− f ′2(t))2dt, , T :period of measurements

=

∫
T

[
∑
j

(α∗1,j − α∗2,j)Bj,3(t)]2dt,

=

∫
T

[
∑
j1,j2

[(α∗1,j1 − α
∗
2,j1

)Bj1,3(t)][(α∗1,j2 − α
∗
2,j2

)Bj2,3](t)dt,

=
∑
j1,j2

(α∗1,j1 − α
∗
2,j1

)(α∗1,j2 − α
∗
2,j2

)

∫
T
Bj1,3(t)Bj2,3(t)dt,

= (α∗1 −α∗2)′Σ(α∗1 −α∗2), Σj1,j2 =

∫
T
Bj1,3(t)Bj2,3(t)dt,

Σ is positive semi-definite matrix here.
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Figure 5.14: Mean functions

5.7 Performance of the Proposed Method in Simu-

lation Study

We consider 8 different mean functions on [0,3] as follows:

f1(t) = 10 + t; f2(t) = 10− t; f3(t) = 1 + t; f4(t) = 1− t

f5(t) = 0; f6(t) = 6, f7(t) =
(5− t)2

8
, f8(t) =

(2 + t)2

8
.

Sample curves were generated with various levels of Gaussian noise (σ level) . Both

mean functions and spline estimates of sample curves were plotted for σ = 0.25 and

σ = 0.5 and for the case of one inner knot (See Figure 5.14 and Figure 5.15) .

In terms of shape there are mostly three types of curves; increasing , decreasing
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Figure 5.15: Spline estimates, σ = 0.025 (left), σ = 0.5(right)

and level, being considered above. Algorithm given in 1 is applied on the data and

mis-classification rates are computed to understand goodness of the performance. Since

assigned labels may be mis-matched, cluster labels are validated through permuting

within groups until maximum number of matches between labels is obtained. This is

maximization of trace of 3× 3 match matrix under all permutations of labels. K-means

was implemented with 5 random sets of starting values. This is very similar method as

suggested by Heggeseth (2013) except for the fact that we considered non-linear function

in our simulation study and B-splines were computed based on equi-spaced internal

knots as opposed to quartile-based knots. Also Heggeseth (2013) did not consider any

internal knots. This simulation is performed for various noise level and with two different

sequences of equi-spaced internal knots. Performance results are summarized below for

each of these cases through misclassification rates. Clearly from the table it is evident

that mis-classification increases as noise level and number of internal knots increase as
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σ Inner knots Misclassification Rate
0 (True Curves) 1 0%

0.1 1 0%
0.25 1 7.5%
0.5 1 32.5%

0 (True Curves) 2 0%
0.1 2 0%
0.25 2 30%
0.5 2 35%

Table 5.8: Misclassification Increases with Noise and Number of Knots

with more internal knots, splines tend to over-fit the noise.

5.8 Model-based Alternative

Alternatively one can incorporate the cluster structure within the modeling framework

in couple of ways. The easiest way is to consider ci (as in the DIR-RT 2nd stage model)

as the representative for average growth rate and hence different learning patterns would

correspond to different values of ci’s. If we assume there are 3 clusters the we can put a

prior on ci as a mixture of Gaussians.

ci ∼
3∑

k=1

πkf(µk, σk), f : Gaussian.

We then calculate the posterior probability that ci belongs to a particular group. There

will be label switching or identifiability issues, which can be mitigated by putting appro-

priate constraints. Also if the number of clusters are not known we can vary the number
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of clusters and consider them as competing models and choose the one based on some

model selection criterion.

5.9 Applications to MetaMetrics Test Data

Currently, both the methodologies are being implemented to MetaMetrics test data. The

distance based approach is applied to cluster growth curve estimates of DIR-RT models,

as obtained by posterior median. After that cluster results are mapped with ci values.

We choose K to be 3; this is based on the belief that there are 3 types of students; fast

learners, slow learners and the average. From eye-balling it is clear that high growth

curves and low ones are well separated. Alternatively, we could have used silhouette

method to decide from a set of reasonable values. On the other hand for model-based

approach the modeling framework of 2nd stage of DIR-RT is modified. Along with that

full conditionals are being modified.

5.10 Discussion

We verified the goodness of the suggested distance-based approach in light of simulated

data. In the simulation study we dealt with, both true curves (σ =0) and samples of true

curves with various levels of added noise. We note that with the increase of noise level

performance of clustering technique becomes poor as splines tend to over-fit. Currently

the same is applied to DIR-RT estimates of latent ability, thereby clustering the latent
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curves. We believe that the cluster should reflect diversity represented by estimates of

average growth rates, c′is. A derivative Spline based clustering can help differentiate

between curves based on curvature and help identify different groups of students. The

distance-based approach is fast and easy-to-implement where model based approach

would require MCMC steps. Hence the latter is going to take longer time to implement.
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Appendix A

MCMC Computation for DIR-RT

Models

MCMC proceeds by running through block Gibbs sampler, thereby updating a block of

variables at a time. The following lists the steps for sampling block of variables from

their full conditional posterior distribution.

Step 1 : Sampling Y: Truncated Normal Distribution Sampling

Given θ, ϕ, η, γ, and X the latent variables {Yi,t,s,l} are sampled from

Yi,t,s,l ∼ N+(θi,t − ai,t,s + ϕi,t + ηi,t,s, ψ
−1
i,t,s,l) if Xi,t,s,l = 1

Yi,t,s,l ∼ N−(θi,t − ai,t,s + ϕi,t + ηi,t,s, ψ
−1
i,t,s,l) if Xi,t,s,l = 0 ,

where N+(·, ·) means the normal distribution truncated at the left by zero while N−(·, ·)

is the normal distribution truncated at the right by zero.

Step 2 : Sampling θ: The Sampling Scheme Depends on the Choice of L(·)

Step 2.1 : L(·) = ·, Forward Filtering and Backward Sampling (FFBS).

Define Zi,t,s,l = Yi,t,s,l+ai,t,s−ϕi,t−ηi,t,s−ρ−1, Hi,t,s = log(Ri,t,s)−µi−νi,t+β(ai,t,s−
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ρ−1) and use the setting of λi,t = θi,t − ρ−1 and gi,t = 1− ciρ∆+
i,t, then the (conditional)

one-parameter DIR-RT model will fit the framework of dynamic linear model (see the

reference, West and Harrison (1997)), i.e.,

System Equation: λi,t = gi,tλi,t−1 + wi,t,

Observation Equation: Zi,t,s,l = λi,t + ξi,t,s,l,

Hi,t,s = βλi,t + ζi,t,s,

where wi,t ∼ N (0, φ−1∆i,t), ξi,t,s,l ∼ N (0, 4γ2
i,t,s,l + σ2) and ζi,t,s ∼ N (0, %−1). Define

information available on the tth day as

Fi,t =
{
gi,e, φ, ψ, ϕ, η, %, c, β, µi, νi,e, Hi,e,1, · · · , Hi,e,Si,e

, Zi,e,1,1, · · · , Zi,e,Si,e,Ki,e,Si,e

}t
e=1

.

The FFBS algorithm can be implemented to block update each λi = (λi,0, · · · , λi,Ti)′:

1. (Forward Filtering) For t ≥ 1, it is not hard to show that [λi,t | Fi,t] ∼ N (µi,t, Vi,t),

with µi,t = Vi,t(R
−1
i,t di,t +

∑Si,t

s=1

∑Ki,t,s

l=1 Zi,t,s,lψi,t,s,l + %β
∑Si,t

s=1Hi,t,s) and Vi,t =(
R−1
i,t +

∑Si,t

s=1

∑Ki,t,s

l=1 ψi,t,s,l + %β2Si,t

)−1

. Notice when t = 0, λi,0 followsN (µi,0, Vi,0)

with µi,0 = µGj
− ρ−1 and Vi,0 = VGj

. Here, from system equation it follows

the prior distribution of λi,t | Fi,t−1 ∼ N (di,t, Ri,t), where di,t = gi,tµi,t−1 and

Ri,t = g2
i,tVi,t−1 + φ−1∆i,t.

2. (Backward Sampling) Save all quantities of µi,t and Vi,t. Then, draw λi,Ti from
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N (µi,Ti , Vi,Ti). When t = (Ti − 1) to 0, with some algebra, we can see λi,t will

be drawn from [λi,t | λi,t+1,Fi,t] ∼ N (hi,t,mi,t), where hi,t = mi,t(V
−1
it, µi,t +

φgi,t+1∆−1
i,t+1λi,t+1 ) and mi,t = (φg2

i,t+1∆−1
i,t+1 + V −1

i,t )−1.

Thus, for t = 0, · · · , Ti, set θi,t = λi,t + ρ−1 and θi is sampled as a whole block, noticing

Pr(θi | Fi,Ti) = Pr(θi,Ti | Fi,Ti)Pr(θi,Ti−1 | θi,Ti ,Fi,T−1) · · ·Pr(θi,0 | θi,1,Fi,0).

Step 2.2 L(·) = | · |, Conditional Mixture of Truncated Normal Distribution

Consider φ, c, Y , ϕ, η, γ, µ, ν, % and β are given. Similarly, the (conditional)

one-parameter DIR-RT model fits the framework of state space models,

System Equation: λi,t = gi,tλi,t−1 + wi,t,

Observation Equation: Zi,t,s,l = λi,t + ξi,t,s,l,

Hi,t,s = β|λi,t − qi,t,s|+ ζi,t,s,

where qi,t,s = ai,t,s − ρ−1 and other parameters have same definitions as before. Instead

of sampling θi,t, we are going to sample λi,t and then θi,t = λi,t+ρ−1. A Gibbs algorithm

to sample λi,0, . . . , λi,Ti is designed below.

For t = 1, · · · , Ti − 1, after some mathematical derivations, λ
(M)
i,t can be regarded as

drawing from a mixture of truncated normal distribution, i.e.,

λ
(M)
i,t ∼ Pr(λi,t | λ(M)

i,t−1, λ
(M−1)
i,t+1 ,Fi,Ti),
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where Pr(λi,t | λ(M)
i,t−1, λ

(M−1)
i,t ,Fi,Ti) =

∑Si,t

s=0 pi,t,sN(qi,t,s,qi,t,s+1](di,t,s, Ri,t) with qi,t,0 =

−∞, qi,t,Si,t+1 = ∞, pi,t,s defined as pi,t,s =
Φ

(
qi,t,s−di,t,s√

Ri,t

)
−Φ

(
qi,t,s+1−di,t,s√

Ri,t

)
∑Si,t

s=0

(
Φ

(
qi,t,s−di,t,s√

Ri,t

)
−Φ

(
qi,t,s+1−di,t,s√

Ri,t

)) , and

mi,t = φ∆−1
i,t gi,tλ

(M)
i,t−1 + φ∆−1

i,t+1gi,t+1λ
(M−1)
i,t+1 +

∑Si,t

s=1

∑Ki,t,s

l=1 ψi,t,s,lZi,t,s,l + %
∑Si,t

s=1 β
2qi,t,s,

di,t,s = Ri,t

(
mi,t + %β

(∑s
j=0 Hi,t,j −

∑Si,t

j=sHi,t,j

))
, s = 0, · · · , Si,t, Hi,t,0 = 0, Ri,t =(

φ∆−1
i,t + φ∆−1

i,t+1g
2
i,t+1 +

∑Si,t

s=1

∑Ki,t,s

l=1 ψi,t,s,l + %β2Si,t

)−1

. The formula is almost the same

for sampling λi,Ti with only deleting the terms involving the index of t + 1 in mi,t and

Ri,t and similarly, deleting the terms involving the index of t− 1 in mi,t and Ri,t for λi,0.

At the end, set θi,t = λi,t + ρ−1, for t = 1, · · · , Ti.

Step 3 : Sampling c: Truncated Normal Distribution Sampling

When θ and φ are given, the full conditional distribution of ci is the truncated normal

distribution

ci ∼ N+

(∑Ti
t=1(1− ρθi,t−1)(θi,t − θi,t−1)∆+

i,t∆
−1
i,t∑Ti

t=1(∆+
i,t(1− ρθi,t−1))2∆−1

i,t

,
1

φ
∑Ti

t=1(∆+
i,t(1− ρθi,t−1))2∆−1

i,t

)
.

Step 4 : Sampling η: Multivariate Normal Distribution Sampling

When θ, ϕ, τ , Y and γ are given, if Si,t = 1, ηi,t,Si,t
= 0, while if Sit > 1, then the

full conditional distribution of η∗it is the multivariate normal distribution

η∗i,t ∼ NSi,t−1

(
(ATi,tΣ

−1
ψi,t
Ai,t + τiΣ

−1
i,t )−1ATi,tΣ

−1
ψi,t
Y ∗i,t, (A

T
i,tΣ

−1
ψi,t
Ai,t + τiΣ

−1
i,t )−1

)
,

where Y ∗i,t = (Yi,t,1,1−θi,t+ai,t,1−ϕi,t, · · · , Yi,t,1,Ki,t,1
−θi,t+ai,t,Ki,t,1

−ϕi,t, · · · , Yi,t,Si,t,Ki,t,Si,t
−
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θi,t + ai,t,Ki,t,Si,t
− ϕi,t)′, Σ−1

ψi,t
= diag((ψi,t,1,1, · · · , ψi,t,Si,t,Ki,t,Si,t

)′), Ai,t =
(⊕Si,t−1

s=1 1′Ki,t,s
,

−JKi,t,Si,t
×(Si,t−1)

)′
with 1Ki,t,s

being an unit vector with Ki,t,s dimension,
⊕

indicating

direct sum. Set ηi,t,Si,t
= −

∑Si,t−1
s=1 ηi,t,s.

Step 5 : Sampling τ : Gamma Distribution Sampling

When η is given, the full conditional distribution of τi is the gamma distribution

τi ∼ Ga

(∑Ti
t=1 Si,t − (Ti + 1)

2
,

∑Ti
t=1 η

∗
i,t
′Σ−1

i,t η
∗
i,t

2

)
.

where Ga(a, b) denotes a gamma distribution with the shape parameter a and the rate

parameter b.

Step 6 : Sampling ϕ: Normal Distribution Sampling When θ, η, Y and γ are

given, the full conditional distribution of ϕit is the normal distribution

ϕi,t ∼ N

(∑Si,t

s=1

∑Ki,t,s

l=1 ψi,t,s,l(Yi,t,s,l − θi,t + ai,t,s − ηi,t,s)∑Si,t

s=1

∑Ki,t,s

l=1 ψi,t,s,l + δi
,

1∑Si,t

s=1

∑Kits

l=1 ψi,t,s,l + δi

)
.

Step 7 : Sampling δ: Gamma Distribution Sampling When ϕ is given, the full

conditional distribution of δi is the gamma distribution

δi ∼ Ga

(
Ti − 1

2
,

∑Ti
t=1 ϕ

2
i,t

2

)
.

Step 8 : Sampling φ: Gamma Distribution Sampling



114

When θ, c is given, the full conditional distribution of φ is the gamma distribution

φ ∼ Ga

(∑n
i=1 Ti − 1

2
,

∑n
i=1

∑Ti
t=1 ∆−1

i,t (θi,t − θi,t−1 − ci(1− ρθi,t−1)∆+
i,t)

2

2

)
.

Step 9 : Sampling γ : Metropolis-Hastings Sampling

Given Y , θ, ϕ and η, the full conditional distribution of γi,t,s,l is not in a closed form.

Thus, we resort to a Metropolis-Hastings scheme to sample this distribution. A suitable

proposal for sample γ is K-S distribution itself. Thus, we first sample γ from the K-S

distribution and then let

γ
(M)
i,t,s,l =


γ∗, with probability min(1, LR)

γ
(M−1)
i,t,s,l , otherwise

where, given Y , θ, ϕ and η,

LR =

√
σ2 + 4(γ

(M−1)
i,t,s,l )2

σ2 + 4(γ∗)2
exp

{
−(Yi,t,s,l − θi,t + ai,t,s − ϕi,t − ηi,t,s)2

2

·

(
1

σ2 + 4(γ∗)2
− 1

σ2 + 4(γ
(M−1)
itsl )2

)}
.

Step 10 : Sampling µ: Normal Distribution

Given %, ν, θ, β, the full conditional distribution of µi is the normal distribution,

µi ∼ N

(∑Ti
t=1

∑Si,t

s=1 [log(Ri,t,s) + νi,t − βL(θi,t − ai,t,s)]∑Ti
t=1 Si,t

,
1

%
∑Ti

t=1 Si,t

)
.
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Step 11 : Sampling ν: Normal Distribution

Given %, µ, θ, β, the full conditional distribution of νi,t is the normal distribution,

νi,t ∼ N

(∑Si,t

s=1−% [log(Ri,t,s)− µi − βL(θi,t − ai,t,s)]
%Si,t + κi

,
1

%Si,t + κi

)
.

Step 12 : Sampling %: Gamma Distribution

Given µ, ν, θ, β, the full conditional distribution of % is the gamma distribution,

% ∼ Ga

(∑n
i=1

∑Ti
t=1 Si,t

2
,

∑n
i=1

∑Ti
t=1

∑Si,t

s=1 [log(Ri,t,s)− µi + νi,t − βL(θi,t − ai,t,s)]2

2

)
.

Step 13 : Sampling κ: Gamma Distribution

Given ν, the full conditional distribution of κi is the gamma distribution,

κi ∼ Ga

(
Ti
2
,

∑Ti
t=1 ν

2
i,t

2

)
.

Step 15 : Sampling β: Normal Distribution

Given %, ν, µ, and θ the full conditional distribution of β is

β ∼ N

(∑n
i=1

∑Ti
t=1

∑Si,t

s=1 L(θi,t − ai,t,s) [log(Ri,t,s)− µi + νi,t]∑n
i=1

∑Ti
t=1

∑Si,t

s=1(θi,t − ai,t,s)2
,

1

%
∑n

i=1

∑Ti
t=1

∑Si,t

s=1(θi,t − ai,t,s)2

)
.
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Appendix B

DIC Computation based on Partial

DIR-RT Models

Let us define the vectorized parameters Θ = vec(%, κ, β, θ). Set R?
i,t = (logRi,t,1 · · · ,

logRi,t,Si,t
)′ and µi,t = (µi + βL(θi,t − ai,t,1), · · · , µi + βL(θi,t − ai,t,Si,t

))′. We can show

that R?
i,t

ind∼ NSit
(µi,t,Ωi,t), where ind indicates independent and Ωi,t = κ−1

i JSi,t
+%−1ISi,t

.

The partial likelihood of DIR-RT models based only on response times is then

L(Θ|R?
i,t) =

n∏
i=1

Ti∏
t=1

φ(R?
i,t|Θ),

where φ(·|Θ) is the multivariate normal probability density function. Then, according

to (3.2), the partial DIC defined for the goodness of fit and model complexity of the

part of response times in DIR-RT models is

DICP = 2EΘ|R?
i,t
Q(Θ, R?

i,t, L(·))−Q(Θ̄, R?
i,t, L(·)),
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with DICP implying partial DIC and Q(Θ, R?
i,t, L(.)) = −2logL(Θ|R?

i,t). Immediately

following from the facts of |Ωi,t| = %−Si,t(1 + %
Si,t

ki
), Ω−1

i,t = %ISi,t
− %2

ki+%Si,t
JSi,t

, we can

simplify

−2logL(Θ|R?
i,t) =

∑
i

∑
t

[(R?
i,t − µi,t)′Ω−1

i,t (R?
i,t − µi,t) + log|Ωi,t|+ (Si,tlog2π)]

= %
∑
i,t

(R?
i,t − µi,t)′(R?

i,t − µi,t)− %2
∑
i,t

[(R?
i,t − µi,t)′1Si,t

]2

ki + %Si,t

+ log(
2π

%
)(
∑
i,t

+Si,t)
∑
it

log(κi + %Si,t)−
∑
i,t

log κi.
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Appendix C

MCMC Computations for

DIR-SMSG Models

Full conditionals when φ is unknown

Step 1 :Sampling Y: Truncated Normal Distribution Sampling

Yi,t,s,l ∼ N+(θi,t − ai,t,s + ϕi,t + ηi,t,s, ψ
−1
i,t,s,l) if Xi,t,s,l = 1

Yi,t,s,l ∼ N−(θi,t − ai,t,s + ϕi,t + ηi,t,s, ψ
−1
i,t,s,l) if Xi,t,s,l = 0 ,

where N+ means the normal distribution truncated at the left by zero while N− is the

normal distribution truncated at the right by zero and ψ−1
i,t,s,l = 4ν2

i,t,s,l + σ2. Sampling

from truncated normals is fast and easy.

Step 2 :Sampling θ : normal sampling and computation of Z

Define: Zi,t,s,l = Yi,t,s+ai,t,s−ϕi,t−ηi,t,s. Zi,t,.,. =
∑

s,l Zi,t,s,l. (ψZ)i,t,s,l = ψi,t,s,lZi,t,s,l.
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π(θi,t | .) ∼ N (Rit(Xi(t, :)αiφ∆−1
i,t + (ψZ)i,t,.,.), Rit = [φ/∆i,t + ψi,t,.,.]

−1) (C.1)

Step 3 :Sampling α: Truncated multivariate normal sampling

π(αi | .) ∝ exp−(αi−αm
i )′Pi(αi−αm

i )/2

m∏
j≥2

1(αi,j ≥ αi,j−1) (C.2)

Pi = φ
∑
t

[Xi(t, :)
′Xi(t, :)]∆

−1
i,t + ωiK

δ, αmi = P−1
i φ

∑
t

[Xi(t, :)
′θi,t∆

−1
i,t ]

Since pdf has a domain restriction, it leads to multivariate truncated normal. We follow

Robert (1995)’s approach to run a single-move MCMC chain to sample αi. Let αci be

the current state of MCMC chain. Let us run the sub-chain upto L (taken to be 100)

many steps. The algorithm can be given for an individual i as follows.

Set α
(0)
i = αci . Draw samples from the univariate truncated normals successively and

repeat the following m steps for l =1 through L.

1. α
(l)
i,1 ∼ N (µi,1, σ

2
i,1,−∞, α

(l−1)
i,2 )

2. α
(l)
i,2 ∼ N (µi,2, σ

2
i,2, α

(l)
i,1, α

(l−1)
i,3 )

...

m. α
(l)
i,m ∼ N (µi,m, σ

2
i,m, α

(l)
i,m−1,+∞)
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where N (µ, σ2, µl, µr) denotes a Gaussian distribution with mean µ, variance σ2 and

with left truncation point µl and right truncation point µr, respectively. The truncation

points in the algorithm above are the current states of the adjacent parameters. The

parameters µl and σ2
l are defined as follows. for j = 1, ..,m (the index i is suppressed in

the following)

µj = αmj − P−1
jj {
∑
j′<j

(α
(l)
j′ − α

m
j′ )Pjj′ +

∑
j′>j

(α
(l−1)
j′ − αmj′ )Pjj′}

σ2
j = P−1

jj .

are the conditional means and variances of the (non-truncated) normal posterior.

Step 4 :Sampling ω: Gamma sampling

π(ωi | .) ∼ Ga(a+ (m− 2)/2,αi
′Kδαi/2 + b)

Step 5 :Sampling τ : Gamma sampling

π(τi | .) ∼ Ga(
Si,. − Ti

2
− 1/2,

∑
t

η∗
′

i,tΣ
−1
i,t η

∗
i,t/2), Σ−1

i,t = ISi,t−1 + JSi,t−1

Step 6 :Sampling η∗: Multivariate Normal Distribution Sampling If Si,t > 1,

then the full conditional distribution of η∗i,t is the multivariate normal distribution

η∗i,t ∼ NSi,t−1

(
(ATi,tΣ

−1
ψi,t
Ai,t + τiΣ

−1
i,t )−1ATi,tΣ

−1
ψi,t
Y ∗i,t, (A

T
i,tΣ

−1
ψi,t
Ai,t + τiΣ

−1
i,t )−1

)
,
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where Y ∗i,t = (Yi,t,1,1−θi,t+ai,t,1−ϕi,t, · · · , Yi,t,1,Ki,t,1
−θi,t+ai,t,1−ϕi,t, · · · , Yi,t,Si,t,Ki,t,Si,t

−

θi,t + ai,t,Ki,t,Si,t
− ϕi,t)′, Σ−1

ψi,t
= diag((ψi,t,1,1, · · · , ψi,t,Si,t,Ki,t,Si,t

)′),

Ai,t =



1 0 0 · · · 0

...
...

...
...

...

1 0 0 · · · 0

0 1 0 · · · 0

...
...

...
...

...

0 0 0 · · · 1

−1 −1 −1 · · · −1

...
...

...
...

...

−1 −1 −1 · · · −1


(
∑Si,t

s=1Ki,t,s)×(Si,t−1)

,

and ηi,t,Si,t
= −

∑Si,t−1
s=1 ηi,t,s. When Si,t = 1, ηi,t,Si,t

= 0.

Step 7 :Sampling ϕ: Normal Distribution Sampling

ϕi,t ∼ N

(∑Si,t

s=1

∑Ki,t,s

l=1 ψi,t,s,l(Yi,t,s,l − θi,t + ai,t,s − ηi,t,s)
ψi,t,.,. + δi

,
1

ψi,t,.,. + δi

)
.

Step 8 :Sampling δ: Gamma Distribution Sampling
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When ϕ is given, the full conditional distribution of δi is the gamma distribution

δi ∼ Ga

(
Ti − 1

2
,

∑Ti
t=1 ϕ

2
i,t

2

)
.

Step 9 :Sampling φ: Gamma Distribution Sampling

φ ∼ Ga

(∑n
i=1 Ti − 1

2
,

∑n
i=1

∑Ti
t=1 ∆−1

i,t (θi,t −Xi(t, :)αi)
2

2

)
.

Step 10 :Sampling γ : Metropolis-Hastings Sampling

π(γi,t,s,l|.) ∝
√

1

σ2 + 4γ2
i,t,s,l

exp

{
−(Yi,t,s,l − θi,t + ai,t,s − ϕi,t − ηi,t,s)2

2(σ2 + 4γ2
i,t,s,l)

}
p(γi,t,s,l),

(C.3)

which is not in closed form. So we shall resort to a Metropolis-Hastings scheme to sample

this distribution. A suitable proposal for sample γ is K-S distribution itself. Thus, we

first sample γ from the K-S distribution. Then, we let

γ
(M)
i,t,s,l =


γ∗, with probability min(1, LR)

γ
(M−1)
i,t,s,l , otherwise
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where,

LR =

√
σ2 + 4(γ

(M−1)
i,t,s,l )2

σ2 + 4(γ∗)2
exp

{
−(Yi,t,s,l − θi,t + ai,t,s − ϕi,t − ηi,t,s)2

2

·

(
1

σ2 + 4(γ∗)2
− 1

σ2 + 4(γ
(M−1)
i,t,s,l )2

)}
, (C.4)

and M indicates the M -th iteration step in MCMC.

Simplifications to the Steps When φ is Known

Thanks to collapsing θ we will have to re-define ψi,t,s,l as follows,

ψ−1
i,t,s,l = 4γ2

i,t,s,l + σ2 + ∆i,t/φ.

Since θ does not exist anymore, Steps 1 through 10 may not make sense. We would like

to make least changes in the algorithm defined for general case. Let us re-define θ as

follows:

θi,t = Xi(t, :)αi (C.5)

With these new definitions in mind, MCMC steps will remain the same for Step 1,

Step 4 through Step 8.

Few changes are necessary in the following cases. In Step 2 C.1 will be replaced by C.5.

In Step 9 φ will not be simulated like before. Instead φ will be assigned the known
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value. In Step 10 C.3 is replaced by the following,

π(γi,t,s,l|.) ∝
√

1

σ2 + 4γ2
i,t,s,l + ∆i,t/φ

exp

{
−(Yi,t,s,l − θi,t + ai,t,s − ϕi,t − ηi,t,s)2

2(σ2 + 4γ2
i,t,s,l + ∆i,t/φ)

}
p(γi,t,s,l).

and C.4 is replaced by the following,

LR =

√
σ2 + ∆i,t/φ+ 4(γ

(M−1)
i,t,s,l )2

σ2 + ∆i,t/φ+ 4(γ∗)2
exp

{
−(Yi,t,s,l − θi,t + ai,t,s − ϕi,t − ηi,t,s)2

2

·

(
1

σ2 + ∆i,t/φ+ 4(γ∗)2
− 1

σ2 + ∆i,t/φ+ 4(γ
(M−1)
i,t,s,l )2

)}
..

In Step 3 C.2 will be replaced by the following

π(αi | .) ∝ exp−(αi−αm
i )′Pi(αi−αm

i )/2

m∏
j≥2

1(αi,j ≥ αi,j−1)

Pi =
∑
t

[Xi(t, :)
′Xi(t, :)]ψi,t,.,. + ωiK

δ, αmi = P−1
i

∑
t

[Xi(t, :)
′(ψZ)i,t,.,.]
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Posterior Density When φ is Known

π(Y,θ, δ, τ ,α,ω,γ | X)

∝ {
n∏
i=1

p(τi)p(δi)p(αi|ωi)p(ωi|a, b)}{
n∏
i=1

Ti∏
h=1

Si,t∏
s=1

Ki,t,s∏
l=1

p(γi,t,s,l)}

× {
n∏
i=1

Ti∏
h=1

Si,t∏
s=1

Ki,t,s∏
l=1

[I(Yi,t,s,l > 0)I(Xi,t,s,l = 1) + I(Yi,t,s,l <= 0)I(Xi,t,s,l = 0)]

√
ψi,t,s,l

2π
exp(−ψi,t,s,l

2
(Yi,t,s,l − θi,t + ai,t,s − ϕi,t − ηi,t,s)2)I(ηi,t,Si,t

= −
Si,t−1∑
s=1

ηi,t,s)}

× {
n∏
i=1

Ti∏
h=1

τ
Si,t−1

2
i exp(

τiη
∗′
i,tΣ

−1
i,t η

∗′
i,t

2
)} × {

n∏
i=1

Ti∏
h=1

δ
1
2
i exp(

−δiϕ2
i,t

2
)}

× {
n∏
i=1

Ti∏
t=1

δ
1
2
i exp(

−δiϕ2
i,t

2
)} × {

n∏
i=1

Ti∏
h=1

I(θi,t = Xi(t, :)αi)}
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