Document Type

Article

Abstract

Though IP multicast is resource ef£cient in delivering data to a group of members simultaneously, it suffers from scalability problem with the number of concurrently active multicast groups because it requires a router to keep forwarding state for every multicast tree passing through it. To solve this state scalability problem, we proposed a scheme, called aggregated multicast. The key idea is that multiple groups are forced to share a single delivery tree. In our earlier work, we introduced the basic concept of aggregated multicast and presented some initial results to show that multicast state can be reduced. In this paper, we develop a more quantitative assessment of the cost/bene£t trade-offs. We propose an algorithm to assign multicast groups to delivery trees with controllable cost and introduce metrics to measure multicast state and tree management overhead for multicast schemes. We then compare aggregated multicast with conventional multicast schemes, such as source speci£c tree scheme and shared tree scheme. Our extensive simulations show that aggregated multicast can achieve signi£cant routing state and tree management overhead reduction while containing the expense of extra resources (bandwidth waste and tunnelling overhead). We conclude that aggregated multicast is a very cost-effective and promising direction for scalable transit domain multicast provisioning.

Comments

Published in Cluster Computing, Vol. 8, No. 1, pp. 15-26 (January 2005) at
http://dx.doi.org/10.1007/s10586-004-4433-8



Share

COinS