Date of Completion


Embargo Period



pattern matching, tree structure, reads alignment, motif search, genome assembly, dna sequences compression, huffman encoding

Major Advisor

Chun-Hsi Huang

Associate Advisor

Sanguthevar Rajasekaran

Associate Advisor

Don Sheehy

Field of Study

Computer Science and Engineering


Doctor of Philosophy

Open Access

Open Access


This dissertation proposes a novel tree structure, Error Tree (ET), to more efficiently solve the Approximate Pattern Matching problem, a fundamental problem in bioinformatics and information retrieval. The problem involves different matching measures such as the Hamming distance, edit distance, and wildcard matching. The input is usually a text of length n over a fixed alphabet of size Σ, a pattern P of length m, and an integer k. The output is those subsequences in the text that are at a distance ≤ k from P by Hamming distance, edit distance, or wildcard matching.

An immediate application of the approximate pattern matching is the Planted Motif Search, an important problem in many biological applications such as finding promoters, enhancers, locus control regions, transcription factors, etc. The (l, d)-Planted Motif Search is defined as the following: Given n sequences over an alphabet of size Σ, each of length m, and two integers l and d, find a motif M of length l, where in each sequence there is at least an l-mer (substring of length l) at a Hamming distance of ≤ d from M. Based on the ET structure, our algorithm ET-Motif solves this problem efficiently in time and space. The thesis also discusses how the ET structure may add efficiency when it comes to Genome Assembly and DNA Sequence Compression.

Current high-throughput sequencing technologies generate millions or billions of short reads (100-1000 bases) that are sequenced from a genome of millions or billions bases long. The De novo Genome Assembly problem is to assemble the original genome as long and accurate as possible. Although high quality assemblies can be obtained by assembling multiple paired-end libraries with both short and long insert sizes, the latter is costly to generate. Moreover, the recent GAGE-B study showed that a remarkably good assembly quality can be obtained for bacterial genomes by state-of-the-art assemblers run on a single short-insert library with a very high coverage. This thesis introduces a novel Hierarchical Genome Assembly (HGA) method that takes further advantage of such high coverage by independently assembling disjoint subsets of reads, combining assemblies of the subsets, and finally re-assembling the combined contigs along with the original reads. We empirically evaluate this methodology for eight leading assemblers using seven GAGE-B bacterial datasets consisting of 100bp Illumina HiSeq and 250bp Illumina MiSeq reads with coverage ranging from 100x-∼200x. The results show that HGA leads to a significant improvement in the quality of the assembly for all evaluated assemblers and datasets. Still, the problem involves a major step which is overlapping the ends of the reads together and allowing few mismatches (i.e. the approximate matching problem). This requires computing the overlaps between the ends of all-against-all reads. The computation of such overlaps when allowing mismatches is intensive. The ET structure may further speed up this step.

Lastly, due to the significant amount of DNA data generated by the Next- Generation-Sequencing machines, there is an increasing need to compress such data to reduce the storage space and transmission time. The Huffman encoding that incorporates DNA sequence characteristics proves to better compress DNA data. Different implementations of Huffman trees, centering on the selection of frequent repeats, are introduced in this thesis. Experimental results demonstrate improvement on the compression ratios for five genomes with lengths ranging from 5Mbp to 50Mbp, compared with the use of a standard Huffman tree algorithm. Hence, the thesis suggests an improvement on all DNA sequence compression algorithms that employ the conventional Huffman encoding. Moreover, approximate repeats can be compressed and further improve the results by encoding the Hamming or edit distance between these repeats. However, computing such distances requires additional costs in both time and space. These costs can be reduced by using the ET structure.