A study involving mordenite, titanate nanotubes, perfluoroalkoxy polymers, and ammonia borane

Date of Completion

January 2009


Engineering, Chemical|Engineering, Materials Science




Zeolites and molecular sieves are finding applications in many areas of catalysis due to appreciable acid activity, shape selectivity, and ion-exchange capacity, as they possess an unbalanced framework charge. For catalytic applications, zeolites become more valuable as the ratio of SiO2/Al2O 3 increases. Acid resistance and thermal stability of zeolite are both improved with increasing SiO2/Al2O3. This part of the thesis deals with the control of morphology focused on decreasing the crystal diameter of mordenite zeolite and to increase the SiO2/Al 2O3 ratio by changing synthesis conditions. A high SiO 2/Al2O3 ratio (SAR15) of mordenite was prepared in a very short reaction time. We studied the role of hydroxide in the crystallization of the mordenite as a structure director, nucleation time modifier, and crystallite aggregate enhancer. The formation of nano-aggregates of mordenites was greatly enhanced using a combination of alcohol additives and conventional heating. Mordenite nucleation was also increased without using alcohols when microwave heating was employed, but the alcohols further accelerated the nucleation process. The different heating techniques affected the morphology; microwave heating produced crystallites of ∼40 nm, while the conventional hydrothermal method formed larger size crystallites of ∼88 nm. We controlled the size and shape of the mordenite crystals because they have important implications in hydrocarbon conversion and separation processes. Mordenite synthesized showed jellyfish, acicular, flower, and wheat grain like structures.^ In the second part of this thesis, a phase transition was successfully achieved from TiO2 particles to titanate nanotubes by the breakage of Ti-O bonds and the creation of oxygen vacancies without using expensive precursors, high temperatures, high chemical concentrations of alkaline solutions, and long synthesis times. A combination of anatase nano-particles/titanate nano-tubes was synthesized using TiO2 (anatase) and a temperature of only 100°C. When TiO2 (P-25) was used with the same concentration of alkaline solution (1 molar NaOH), the same processing time of 12 hours, and a higher temperature at 110°C, only titanate nano-tubes were observed. The linkages of 'Ti-O' play a very important role in the structural features of different phases. Two crystalline phases (tetragonal and monoclinic) were synthesized as products in the case of TiO 2 (anatase) and one crystalline phase (monoclinic) for products of TiO 2 (P-25). ^ The third part of the thesis concerns surface modification of hydrophobic fluoropolymers that have low surface energies and are very difficult to metallize. Surface modification was done to enhance surface roughness and hence to boost surface energy for metallization processes. We used low impact, environmentally friendly non-thermal plasmas at atmospheric pressure to strip off F - ions and replace them with reactive unsaturated hydrocarbon functionalities such as CH=CH2 on the surface of a polymer. As these hydrocarbon functionalities are reactive with metals, they form composites that have good adhesion between layers of polymer. Due to surface modification, polymeric chains were broken by the loss of fluorine atoms (F/C = 0.33) and the gain of oxygen atoms (O/C = 0.17) using methane/argon plasmas. Methane/hydrogen/argon plasmas on the other hand produced extensive loss of fluorine atoms (F/C = 0.07-0.33) and gain of oxygen atoms (O/C = 0.08-0.16) that was far better than pristine PFA. The surface of PFA was modified by defluorination and oxidation. Further enhancement of COF and COO groups revealed that the surface was modified to a hydrophilic membrane that can further be easily hydrolyzed to COOH in the presence of atmospheric humidity. ^ The last part of the thesis deals with ammonia borane which was studied as a potential source of hydrogen for fuel cells. We analyzed the viability of ammonia borane as a hydrogen carrier compound for fuel cell applications using a thermolysis method. Ammonia borane is an attractive source for hydrogen production for small portable fuel cells because of its properties like relative stability at ambient conditions in air, high hydrogen content (19.6% weight) and capability of evolving a majority of the hydrogen (∼ 12 % wt) with mild (<200°C) heating. Mass spectrometric measurements were conducted using temperature-programmed desorption/mass spectrometry (TPD/MS) at different heating rates and the energy of desorption was calculated accordingly. (Abstract shortened by UMI.)^