Title

Vortical and turbulent structure of planar and lobed mixer free shear layers

Date of Completion

January 1992

Keywords

Engineering, Aerospace|Physics, Fluid and Plasma

Degree

Ph.D.

Abstract

A comprehensive experimental investigation of the free-shear layer vortical and turbulent structure downstream of a lobed mixer has been conducted. Pulsed-laser flow visualization with smoke and three-dimensional velocity measurements with triple-sensor hot film anemometry were obtained for two lobed mixer configurations (symmetric and unsymmetric waveforms) and a baseline, planar configuration. Both laminar and turbulent initial boundary layer conditions were documented for each of the three configurations.^ The main result of this investigation is that a new vortex structure was found to exist for the lobed mixers in addition to the well-known streamwise vortex array. The normal vortex (due to the Kelvin-Helmholtz instability) sheds periodically from the convoluted trailing edge of the lobed mixer and plays a major part in the enhanced mixing process in combination with the streamwise vorticity. The streamwise vorticity deforms the normal vortex into a pinched-off structure that creates intense turbulence and mixing. The scale of the normal vortex was approximately one fourth that of the planar case, thereby introducing a small-scale turbulence over a large cross-stream area of the flow that dominates the near-field Reynolds shear stress distribution. Thus, the lobed mixer free-shear layer provides enhanced mixing down to the molecular scale.^ The shear layer growth rate for the first 5-6 lobe heights was substantially greater than the planar free-shear layer due to the normal and streamwise vortex interaction. Downstream of six lobe heights, the growth rate slowed considerably to a rate below that of the planar configuration due to the reduced turbulent kinetic energy of a double-layered shear layer structure. The streamwise and normal vorticity were completely dissipated by 5-6 lobe heights. Also, the lobed mixer development was found to be surprisingly insensitive to initial laminar and turbulent boundary layer conditions (unlike the planar case). ^