Title

Spectroscopic studies of adhesion of polyurethane to epoxy-coated steel

Date of Completion

January 2000

Keywords

Engineering, Materials Science

Degree

Ph.D.

Abstract

Adhesion between a rigid polyurethane to epoxy coated steel during polyurethane formation, is difficult to achieve. However, depending upon the type and loading level of catalyst used for polyurethane production and the surface pretreatment on epoxy coated surface, improved adhesion has been observed. The objectives of this thesis is trying to develop an understanding of the adhesion in the polyurethane—epoxy coated steel joints by identification of the locus of failure by using new analytical techniques. For the examination of adhesion and failure of said joints, the failed polyurethane and epoxy surfaces were analyzed, using UV-reflection, fluorescence, ATR-IR and microscopy. Even though various techniques such as optical and electron microscopy, ATR-IP, ESCA and SIMS have been used for failure mode analysis in polymeric joint, these techniques are not for in-situ examination of the failure surface as failure occurs. Therefore, this thesis is focused on UV-reflection. and fluorescence techniques because these techniques, if proven to be useful, can be applied for in-situ analysis, via fiber-optic methods. ^ Depending upon the type of catalyst used, a wide range of peel strength (10–89 lb/in-width) was observed for polyurethane—epoxy coated steel joints. Higher peel strengths were observed for joints which were made with lower loading levels of amine catalyst. In such joints, it was observed from ATR-IR, UV-reflection, fluorescence, and microscopy experiments that the polyurethane was transferred to the epoxy surfaces. Also observed was that the polyurethane and epoxy surfaces became rougher as peel strength increased, indicating that failure occurred in the Polyurethane bulk through the polyurethane-epoxy interface. In joints with lower peel strength, neither polyurethane nor epoxy was transferred to the opposing surface, indicating that the failure occurred at the interface between polyurethane and epoxy. ^ Therefore, the results from this thesis have demonstrated that LTV-reflection and fluorescence spectroscopic techniques are useful for failure mode analysis techniques, and can be used for in-situ analysis using fiber-optic attachments. ^