Document Type

Article

Disciplines

Civil Engineering

Abstract

A study was conducted to empirically determine the degradation of survey-grade GPS horizontal position measurements due to the effects of broadleaf forest canopies. The measurements were taken using GPS/GLONASS-capable receivers measuring C/A and P-codes, and carrier phase. Fourteen survey markers were chosen in central Connecticut to serve as reference markers for the study. These markers had varying degrees of sky obstruction due to overhanging tree canopies. Sky obstruction was measured by photographing the sky with a 35mm reflex camera fitted with a hemispherical lens. The negative was scanned and the image mapped using an equal- area projection to remove the distortion caused by the lens. The resulting digital image was thresholded to produce a black-and-white image in which a count of the black pixels is a measure of sky-area obstruction. The locations of the markers were determined independently before the study. During the study, each marker was occupied for four 20-minute sessions over the period of one week in mid-July, 1999. The location of the study markers produced relatively long baselines, as compared with similar studies. We compared the accuracy of GPS-only vs. GPS&GLONASS as a function of sky obstruction. Based on our results, GLONASS observations did not improve or degrade the accuracy of the position measurements. There is a loss of 2mm of accuracy per percent of sky obstruction for both GPS only and GPS&GLONASS.

COinS